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From Theory to Experiment in LHC Physics
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Theory Shower RecoHard process Hadronization Detectors

ℒ(α)

In HEP we can never analytically calculate what we measure

We rely on simulations to connect theory and experiment

Tractable
Intractable



From Theory to Experiment in LHC Physics
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Predicted by some new theory

Measured in an experiment

ℒ(α)
Theory Shower RecoHard process Hadronization Detectors

p(xgen |α) p(xreco |α)



Unfolding

4

Detectors
p(xgen) p(xrec) = ∫ p(xgen)p(xrec |xgen) dxgen

Detector kernel
p(xrec |xgen)

The measured distribution  is a convolution of the generation level 
distribution  with detector the response kernel 

p(xrec)
p(xrec) p(xrec |xgen)

The task of statistically correcting for these effects is called Unfolding



ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

Inverse
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Theory analyses don’t care about detectors

Comparing data from different experiments (Global Analysis)

For some analysis direct access to theory parameters

Resolution

Data preservation

Why Unfolding?
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Classical methods:

Have been around and 
used for a while now

Computationally very 
efficient

Restricted to binned, 1-
dimensional distributions 

ML-based methods:

Used for the first time in an 
ATLAS analysis this year!

Computationally more 
expensive

Allow unbinned, full-dimensional 
unfolding of measurements

How Unfolding?
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ML-based methods:

Used for the first time in an 
ATLAS analysis this year!

Computationally more 
expensive

Allow unbinned, full-dimensional 
unfolding of measurements

Omnifold [1911.09107]

Makes use of NN classifiers to iteratively reweight a 
simulation prior until it fits the measurements

Generative Unfolding [1912.00477]

Makes use of generative NNs to learn the conditional 
distribution  from simulationsp(xgen |xrec)

ATLAS analysis [2405.20041] 

How Unfolding?



How Unfolding?
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ML-based methods:

Used for the first time in an 
ATLAS analysis this year!

Computationally more 
expensive

Allow unbinned, full-dimensional 
unfolding of measurements

Omnifold [1911.09107]

Makes use of NN classifiers to iteratively reweight a 
simulation prior

Generative Unfolding [1912.00477]

Makes use of generative NNs to learn the conditional 
distribution  from simulationsp(xgen |xrec)

Both suffer from prior dependence



Revisiting the problem
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The task is to find the generation level distribution  that gave rise to the observed distribution p(xrec) p(xrec)

ℒ
Theory Shower RecoHard process Hadronization Detectors

∫dxgen p(xreco |xgen) =p(xgen) p(xreco)



Revisiting the problem
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ℒ
Theory Shower RecoHard process Hadronization Detectors

∫dxgen p(xreco |xgen) =p(xgen) p(xreco)

The task is to find the generation level distribution  that gave rise to the observed distribution p(xrec) p(xrec)

Just directly optimize for this objective!



Transfer-based Unfolding
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1) Use a generative NN    to encode the unfolded generation level distributionpθ(xgen)

2) Calculate  using the forward detector kernel   pθ(xrec) = ∫ pθ(xgen)p(xrec |xgen) dxgen p(xrec |xgen)

3) Compare the result to the measured detector level distribution p(xrec)

4) Update  until the convoluted  matches the measured pθ(xgen) pθ(xrec) p(xrec)
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1) Use a generative NN    to encode the unfolded generation level distributionpθ(xgen)

2) Calculate  using the forward detector kernel   pθ(xrec) = ∫ pθ(xgen)p(xrec |xgen) dxgen p(xrec |xgen)

3) Compare the result to the measured detector level distribution p(xrec)

4) Update  until the convoluted  matches the measured pθ(xgen) pθ(xrec) p(xrec)

Doing this with the actual detector simulation is not feasible.
Train a surrogate NN to encode the detector kernel pϕ(xrec |xgen)

The integral has to be approximated with a Monte-Carlo estimate

Maximize the likelihood of the true data under our model distribution pθ(xrec)



Transfer-based Unfolding
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2) Calculate  using the forward detector kernel   pθ(xrec) = ∫ pθ(xgen)p(xrec |xgen) dxgen p(xrec |xgen)

pθ(xrec) = ∫ pθ(xgen)p(xrec |xgen) dxgen

≈ ∫ pθ(xgen)pϕ(xrec |xgen) dxgen

≈
NMC

∑
i=1

pθ(xi,gen)pϕ(xrec |xi,gen)

Replace simulation with surrogate NN

Monte-Carlo approximation of the integral



Transfer-based Unfolding
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2) Calculate  using the forward detector kernel   pθ(xrec) = ∫ pθ(xgen)p(xrec |xgen) dxgen p(xrec |xgen)

pθ(xrec) = ∫ pθ(xgen)p(xrec |xgen) dxgen

≈ ∫ pθ(xgen)pϕ(xrec |xgen) dxgen

≈
NMC

∑
i=1

pθ(xi,gen)pϕ(xrec |xi,gen)

Replace simulation with surrogate NN

Monte-Carlo approximation of the integral

This equation is for one individual data point. 
When training the network we have to calculate this for each data point in each iteration.
To get a reasonable MC approximation we have to draw  samples per data point𝒪(100)



Transfer-based Unfolding
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2) Calculate  using the forward detector kernel   pθ(xrec) = ∫ pθ(xgen)p(xrec |xgen) dxgen p(xrec |xgen)

pθ(xrec) = ∫ pθ(xgen)p(xrec |xgen) dxgen

≈ ∫ pθ(xgen)pϕ(xrec |xgen) dxgen

≈
NMC

∑
i=1

pθ(xi,gen)pϕ(xrec |xi,gen)

Replace simulation with surrogate NN

Monte-Carlo approximation of the integral

This equation is for one individual data point. 
When training the network we have to calculate this for each data point in each iteration.
To get a reasonable MC approximation we have to draw  samples per data point𝒪(100)

Requires large GPUs to train



Revisiting the problem one last time

16

The task is to find the generation level distribution  that gave rise to the observed distribution p(xrec) p(xrec)

ℒ
Theory Shower RecoHard process Hadronization Detectors

∫dxgen p(xreco |xgen) =p(xgen) p(xreco)



Revisiting the problem one last time
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The task is to find the generation level distribution  that gave rise to the observed distribution p(xrec) p(xrec)

ℒ
Theory Shower RecoHard process Hadronization Detectors

∫dxgen p(xreco |xgen) =p(xgen) p(xreco)

Solution is not unique 

Requires ensemble of neural networks to map out the space of possible generation level 
distributions that could have given rise to the observed reconstruction level data



Transfer-based Unfolding
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2) Calculate  using the forward detector kernel   pθ(xrec) = ∫ pθ(xgen)p(xrec |xgen) dxgen p(xrec |xgen)

pθ(xrec) = ∫ pθ(xgen)p(xrec |xgen) dxgen

≈ ∫ pθ(xgen)pϕ(xrec |xgen) dxgen

≈
NMC

∑
i=1

pθ(xi,gen)pϕ(xrec |xi,gen)

Replace simulation with surrogate NN

Monte-Carlo approximation of the integral

This equation is for one individual data point. 
When training the network we have to calculate this for each data point in each iteration.
To get a reasonable MC approximation we have to draw  samples per data point𝒪(100)

Requires very large GPUs to train

Train  networks in parallel to map out the possible solution space 𝒪(30)



Moving on to Cosmology!
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Figure credit: Caroline Heneka  https://indico.nikhef.nl/event/4875/contributions/20257/attachments/8256/11861/EuCAIFcon-Heneka.pdf

https://indico.nikhef.nl/event/4875/contributions/20257/attachments/8256/11861/EuCAIFcon-Heneka.pdf


Square Kilometre Array (SKA)
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https://en.wikipedia.org/wiki/Square_Kilometre_Array

International telescope project currently being built

Expected to start collecting data in the mid 2020s

Will provide the highest-resolution astronomy images ever 
collected at a much higher frequency than all previous telescopes

Will (hopefully) improve our understanding of galaxy evolution, 
cosmological structure formation, the thermal history of the Universe …

Will allow us to observe the Dark Ages for the first time



Square Kilometre Array (SKA)

21

https://en.wikipedia.org/wiki/Square_Kilometre_Array

International telescope project currently being built

Expected to start collecting data in the mid 2020s

Will provide the highest-resolution astronomy images ever 
collected at a much higher frequency than all previous telescopes

Will (hopefully) improve our understanding of galaxy evolution, 
cosmological structure formation, the thermal history of the Universe …

Will allow us to observe the Dark Ages for the first time

At full capacity:


600 TB/s data 

collection rate



ML for SKA images [Credit to Ayo Ore]
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14
0

140 2350

140x140x2350 images 

(=300M pixels)

Images recorded by the SKA will contain > 100 M pixels



ML for SKA images [Credit to Ayo Ore]
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14
0

140 2350

140x140x2350 images 

(=300M pixels)

Images recorded by the SKA will contain > 100 M pixels

Statistical analysis in such high dimension is intractable… 
No choice but to compress the information

A classic summary method is the power spectrum, also 
used to study the CMB, but it is known to not be optimal 
for SKA images.

With ML, one can replace hand crafted summaries by 
learned representations.



ML with SKA images [Credit to Ayo Ore]

(                                      ) x5000 = 1TB
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Many images are required to train neural networks, but high-resolution simulations are slow and large

{mWDM, Ωm Tvir}

Physics Parameters
Simulator

Transformer Neural Network 
(~1M parameters)

Training consists of  many iterations over 
the entire dataset, requiring either

1. Large memory  
                   (dataset stored in RAM)

2. Fast disk speed
                          (reading in chunks every epoch)

Predict Read

Requires very large GPUs to train



Foundation models for SKA [Credit to Ayo Ore]
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(                                      ) x5000 = 1TB Simulation quality can be exchanged with speed

{mWDM, Ωm Tvir}

Physics Parameters

Lo-res 
Simulator

Hi-res 
Simulator

Goal: Leverage large volumes of lo-res images in order to improve performance at hi-res

Approach:    1.  Pre-train a large neural network to summarize lo-res images
 2. Fine-tune the network using small hi-res dataset

Requires very large GPUs to train



Summary and Outlook
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Fundamental physics is entering into the big-data era

ML allows to scale established methods up to this 

ML allows the development of completely new analysis tools that get rid of 
previous approximations and simplifications

Some methods have been used in practice for a while now (event taggers), 
some are moving from proof-of-concept to deployment now (unfolding)

Use bigger GPUs 

Convince more 
people in physics that 
ML is cool

Convince more 
people in computing 
that physics is cool


