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Some Ressources

If you have questions, please interrupt me and ask!

This lecture is based on:
⇒ “Modern Machine Learning for LHC Physicists”,

SS2022 lecture notes of Heidelberg University, arXiv: 2211.01421

Further Reading:

Summary of HEP-ML papers: “HEPML - Living Review”
https://iml-wg.github.io/HEPML-LivingReview/

Tipps for efficient training of NNs:
https://karpathy.github.io/2019/04/25/recipe/

About good coding practices in science: https://goodresearch.dev/
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Tutorials and Hands-On Session

In the afternoons, we will have
Wed: 1:15h hands-on session ML (“A Diffusion Model from Scratch”)

https://github.com/SofiaSchweitzer/crc_summer_school/tree/main

Thu: 1h to finish hands-on and more Q&A
Led by the two ML experts:

Nicole Hartman (ATLAS, TU Munich) Sofia Palacios Schweitzer (TH, Uni Heidelberg)
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Why Machine Learning?

Who has used ML so far?
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Why Machine Learning?

Data volume

Large amounts of labeled (simulation) and unlabeled (experiment) data.
⇒ ML works best with lots of data

https://lhc-commissioning.
web.cern.ch/schedule/
HL-LHC-plots.htm

now

2012
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Why Machine Learning?
Data volume

Data complexity

High-dimensional & highly correlated data.
⇒ ML can handle that well

Data complexity Signal detection Speed
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Why Machine Learning?
Data volume Data complexity

Signal detection

Rare and elusive signals among large backgrounds.
⇒ ML has high sensitivity

Hallin et al. [2109.00546]

Signal detection Speed
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Why Machine Learning?
Data volume Data complexity Signal detection

Computing budget
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Simulation & analysis are computationally expensive.
⇒ ML is fast

https://twiki.cern.ch/
twiki/bin/view/
CMSPublic/CMSOffline
ComputingResults

Speed

2021 2023 2025 2027 2029 2031 2033 2035 2037
Year

0

10000

20000

30000

40000

50000

To
ta

l C
PU

[k
HS

06
-y

ea
rs

] CMSPublic
Total CPU 

2022 Estimates

Run 3 Run 4 Run 5

No R&D improvements
Weighted probable scenario
10 to 20% annual resource increase

Interest

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024 4 / 73



Why Machine Learning?
Data volume Data complexity Signal detection Speed

2021 2023 2025 2027 2029 2031 2033 2035 2037
Year

0

10000

20000

30000

40000

50000

To
ta

l C
PU

[k
HS

06
-y

ea
rs

] CMSPublic
Total CPU 

2022 Estimates

Run 3 Run 4 Run 5

No R&D improvements
Weighted probable scenario
10 to 20% annual resource increase

Increasing interest

We see about 300 papers / year.
⇒ ML is everywhere

via “The INSPIRE REST API”

Interest
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Why Machine Learning?
Data volume Data complexity Signal detection Speed
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ML is fun

⇒ Like Galileo Galilei looking through the telescope for the first time!

via midjourney: “Albert Einstein
smiling while having fun coding”
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Machine Learning for Particle Physics

This week’s plan:

1 Introduction (fits, optimization, and NNs)

2 Regression and Classification

3 Deep Generative Models

4 Anomaly Detection and Data-Driven Methods
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What is Machine Learning?

Tom Mitchell, ML Pioneer

“ML . . . is the study of algorithms that allow computer programs
to automatically improve through experience and by use of data.”

1 algorithm: a method to perform a task of interest.

2 experience: training data, which the algorithm can use
to learn how to perform a task.

3 improve: a way to measure the performance on the
training data.

4 automatically: a strategy to exploit the training data,
without external input.

Judea Pearl,
Turing Award Winner

“ Machine Learning is just glorified ‘curve fitting’ ”
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What is Machine Learning?

Tom Mitchell, ML Pioneer

“ML . . . is the study of algorithms that allow computer programs
to automatically improve through experience and by use of data.”

1 algorithm: a method to perform a task of interest.

2 experience: training data, which the algorithm can use
to learn how to perform a task.

3 improve: a way to measure the performance on the
training data.

4 automatically: a strategy to exploit the training data,
without external input.

Judea Pearl,
Turing Award Winner

“ Machine Learning is just glorified ‘curve fitting’ ”

In physics we fit a function of interest to data
in a statistically well-defined way.
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We fit a function of interest to data in a statistically well-defined way.

Neural networks are parametric numerical functions y = f (x ; θ) that are inspired by biology.

x w , b y

y = σ (w · x + b)

“ReLU” “leaky ReLU” “sigmoid/tanh”

non-linear activation
scalar weight w and scalar bias b ⇒ θ
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We fit a function of interest to data in a statistically well-defined way.

Neural networks are parametric numerical functions y = f (x ; θ) that are inspired by biology.

x1

xi

xn

w⃗ , b y

y = σ (∑n
i=1 wi · xi + b)

non-linear activation

vector weight w⃗
and scalar bias b ⇒ θ

looks like a “real” neuron now:

by Dhp1080 via https://commons.wikimedia.org/w/index.php?curid=4293768
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We fit a function of interest to data in a statistically well-defined way.

Neural networks are parametric numerical functions y = f (x ; θ) that are inspired by biology.

x1

x2

x3

w⃗1, b1

w⃗2, b2

y1

y2

yj = σ (∑n
i=1 wj,i · xi + bj )

non-linear, element-
wise activation

matrix weight w
and vector bias b⃗ ⇒ θ

⇒ this is called a “layer”.
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We fit a function of interest to data in a statistically well-defined way.

Neural networks are parametric numerical functions y = f (x ; θ) that are inspired by biology.

x1

x2

x3

y1

y2

We can now put everything together to a Network:
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We fit a function of interest to data in a statistically well-defined way.

The Loss function L(f (x ; θ), y) encodes our objective: smaller = better

? There are many different ways to encode the same objective, which one is the best?

best model at θbest = argminθL(f (x ; θ), y)
Which set of θ describes the training data best? ⇒ maximize likelihood p(xtrain|θ)

⇒ best loss is the negative (log) likelihood: L = − log p(xtrain|θ)

(We’ll get back to this with examples in a few slides.)
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We fit a function of interest to data in a statistically well-defined way.
How do we minimize L(f (x ; θ), y)?

(stochastic) gradient descent: θt+1
j = θtj − α

〈
∂Lt
∂θj

〉

backpropagation

autodifferentiation

}
taken care of “under the hood”
by pytorch/tensorflow

The loss landscape can be very complicated.
Adaptive optimizers, like ADAM, use momen-
tum to improve convergence.

Adam: A Method for Stochastic Optimization [1412.6980]
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But: we have to be careful!

NN can overfit (memorize) training data and
stop generalizing!

to diagnose (and combat): introduce separate
validation (for model selection) and test sets.

to combat: regularize, for example with
dropout or L2 norm

Decreasing the approximation error increases
the generalization error: the bias-variance trade-off
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Different Learning Paradigms

Machine
Learning

(weakly/semi/fully)

Supervised
Learning

Classification

Regression

likelihood-free
Inference

Reinforcement
Learning

Unsupervised
Learning

Generative
Models

Anomaly
Detection
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Particle Physics Analyses

Figure inspired by R. Winterhalder
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What kind of ML are we using and where?

Regression
▶ reconstruction: momenta, energy
▶ expensive functions

Classification
▶ reconstruction: particle type
▶ signal vs. background

Reinforcement Learning
▶ accelerator control

Generative Models
▶ event generation
▶ detector simulation

Simulation-based Inference

Anomaly Detection

Figure inspired by R. Winterhalder

working on:
tabular data, point clouds, graphs, pixel/voxel
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Machine Learning for Particle Physics

This week’s plan:

1 Introduction (fits, optimization, and NNs)

2 Regression and Classification

3 Deep Generative Models

4 Anomaly Detection and Data-Driven Methods
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Different Learning Paradigms

We first focus on supervised learning: when labels are available
Regression: predict continuous values, like a scattering amplitude

Classification: predict discrete label, like “signal” or “background”

Machine
Learning

(weakly/semi/fully)

Supervised
Learning

Classification

Regression

likelihood-free
Inference

Reinforcement
Learning

Unsupervised
Learning

Generative
Models

Anomaly
Detection
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Regression and the MSE-loss

We have data (xj , yj = f (xj )) and want to learn fθ(x) ≈ f (x).

⇒ maximize the probability for the fit output fθ(xj ) to correspond to the training points yj .

p(x |θ) = ∏j
1√
2πσj

exp

(
−|yj−fθ(xj )|

2

2σ2
j

)

⇒ log p(x |θ) = −∑j

(
|yj−fθ(xj )|2

2σ2
j

)
+ const.(θ) ⇒ Lfit = ∑j

(
|yj−fθ(xj )|2

2σ2
j N

)

If error σj unknown, or same for all: L = 1
2Nσ |yj − fθ(xj )|2 ≡ 1

2σMSE
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1√
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(
−|yj−fθ(xj )|

2

2σ2
j

)
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(
|yj−fθ(xj )|2

2σ2
j

)
+ const.(θ) ⇒ Lfit = ∑j

(
|yj−fθ(xj )|2

2σ2
j N

)

“usual” χ2 minimization

If error σj unknown, or same for all: L = 1
2Nσ |yj − fθ(xj )|2 ≡ 1

2σMSE
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Binary Classification and the BCE-loss

In Binary Classification, we want to predict a discrete label: class 0 or class 1.
⇒ interpret NN output as p(class 1)

⇒ maximize p(xi ) predicting the correct label yi .

p(x |θ) = ∏j

{
p(xj ) if yj = 1

1− p(xj ) if yj = 0
= ∏j p(xj )

yj (1− p(xj ))
(1−yj )

⇒ log p(x |θ) = ∑j yj log p(xj ) + (1− yj ) log (1− p(xj ))

⇒ LBCE = −∑j yj log p(xj ) + (1− yj ) log (1− p(xj )) LCE = −∑j∈Ci
yj log pi (xj )
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Performance Metrics of Classifiers

false positive rate (background efficiency): FP
FP + TN

true positive rate (signal efficiency): TP
TP + FN

accuracy: TP + TN
TP + FN + FP + TN
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Performance Metrics of Classifiers
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FP + TN

true positive rate (signal efficiency): TP
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accuracy: TP + TN
TP + FN + FP + TN

health screening: no FN

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024 18 / 73



Performance Metrics of Classifiers

false positive rate (background efficiency): FP
FP + TN

true positive rate (signal efficiency): TP
TP + FN

accuracy: TP + TN
TP + FN + FP + TN

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024 18 / 73



Performance Metrics of Classifiers

false positive rate (background efficiency): FP
FP + TN

true positive rate (signal efficiency): TP
TP + FN

accuracy: TP + TN
TP + FN + FP + TN

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024 18 / 73



Machine Learning for Particle Physics

This week’s plan:

1 Introduction (fits, optimization, and NNs)

2 Regression and Classification

3 Deep Generative Models
▶ Normalizing Flows
▶ Denoising Diffusion Probabilistic Models (DDPMs)
▶ Conditional Flow Matching (CFM)
▶ Applications
▶ How to evaluate Generative Models

4 Anomaly Detection and Data-Driven Methods
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Motivation: Generative Models

We have a distribution p(x) and want to sample (“generate”) new elements that follow it.

given: {xi} want: x ∼ p(x)
- or -

given: f (x) want: x ∼ f (x)/
∫
f (x) dx

They can be understood as fancy random number generators, with the numbers being:

• pixels of an image

⇒ image generators like MidJourney, DALL·E

via
m
i
d
j
o
u
r
n
e
y
.
c
o
m

• translated to words

⇒ chatbots like ChatGPT,
GitHub CoPilot

• four momenta of particles

⇒ event generators like
MadGraph and Sherpa
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The Landscape of Generative Models.
Variational Autoencoder (VAE)

⇒ Compressing data through a bottleneck.

latent
space DecoderEncoder

data

Generative Adversarial Network (GAN)

⇒ Generator and Discriminator play a game against
each other.

latent
space Generator

data

Discriminator

Diffusion Models

⇒ Gradually add noise and revert.

+noise
denoiser

latent
space

data

Normalizing Flows

⇒ Bijective map to a known distribution.

latent
space

data
space

Bijector
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Machine Learning for Particle Physics

This week’s plan:

1 Introduction (fits, optimization, and NNs)

2 Regression and Classification

3 Deep Generative Models
▶ Normalizing Flows
▶ Denoising Diffusion Probabilistic Models (DDPMs)
▶ Conditional Flow Matching (CFM)
▶ Applications
▶ How to evaluate Generative Models

4 Anomaly Detection and Data-Driven Methods
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Normalizing Flows in a Nutshell

“easy” base
distribution

π(z)

bijective transfor-
mation z = f (x)

“target”
distribution

p(x)

p(x) = π(f (x))
∣∣∣det ∂f (x)

∂x

∣∣∣

⇔ ⇔

density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Training Normalizing Flows

Maximum Likelihood Estimation gives the best loss functions:
Regression: Mean Squared Error Loss

Binary classification: Binary Cross Entropy Loss

. . .

Normalizing Flows give us the log-likelihood (LL) explicitly!

⇒ Maximize log p (the LL) over the given samples.
L = −∑i log pθ(xi )

⇒ If we don’t have samples, but a normalized target q(x), we can use the KL-divergence.

L = DrKL[pθ, q] =
∫
dx pθ(x) log

pθ(x)
q(x)

=
〈
pθ(x)
pθ(x)

log
pθ(x)
q(x)

〉
x∼pθ(x)
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At the Core: Change of Coordinates Formula
Changing coordinates from z⃗ to x⃗ with a map x⃗ = f (⃗z) changes the distribution according to

π̄(⃗x) = π(⃗z)

∣∣∣∣det
∂f (⃗z)

∂⃗z

∣∣∣∣
−1

= π(f −1 (⃗x))
∣∣∣∣det

∂f −1 (⃗x)
∂⃗x

∣∣∣∣
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Base distributions

π̄(⃗x) = π(⃗z)
∣∣∣det ∂f (⃗z)

∂z⃗

∣∣∣
−1

= π(f −1 (⃗x))
∣∣∣det ∂f −1 (⃗x)

∂x⃗

∣∣∣

Can be any distribution with only 2 requirements:
▶ We can easily sample from it
▶ We have access to π(x)

Sets the initial domain of the coordinates.

Most common choices:
▶ uniform distribution (compact in [a, b])
▶ Gaussian distribution (in R)

Topology should match the topology of the target space.
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We need a trackable Jacobian and Inverse.

π̄(⃗x) = π(⃗z)
∣∣∣det ∂f (⃗z)

∂z⃗

∣∣∣ −1 = π(f −1 (⃗x))
∣∣∣det ∂f −1 (⃗x)

∂x⃗

∣∣∣

First idea: making f a NN.

× inverse does not always exist
× Jacobian slow via autograd

×
∣∣∣det ∂f

∂z

∣∣∣ ∝ O(n3dim)

⇒ Let a NN learn parameters κ of a pre-defined transformation!

Each transformation is 1d & has an analytic Jacobian and inverse.
⇒f⃗ (⃗x ; κ⃗) = (C1(x1; κ1),C2(x2; κ2), . . . ,Cn(xn; κn))T

Require a triangular Jacobian for faster evaluation.

⇒ The parameters κ depend only on a subset of all other coordinates.

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
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A chain of bijectors is also a bijector
The full transformation is a chain of these bijectors.

z0 =
f0(z1)

z1 =
f1(z2)

zi =
fi (zi+1)

zk =
fk−1(zk )

π0(z0) π1(z1) . . . . . . πk (zk )

https://engineering.papercup.com/posts/normalizing-flows-part-2/
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Affine Transformations
The coupling function (transformation)

must be invertible and expressive

is chosen to factorize:
f⃗ (⃗x ; κ⃗) = (C1(x1; κ1),C2(x2; κ2), . . . ,Cn(xn; κn))T ,
where x⃗ are the coordinates to be transformed and κ⃗ the parameters of the
transformation.

historically first: the affine coupling function

C (x ; s, t) = exp (s) x + t

where s and t are predicted by a NN.

It requires x ∈ R.

Inverse and Jacobian are trivial.

Its transformation powers are limited.
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Any monotonic function can be used.
Changing coordinates from z⃗ to x⃗ with a map x⃗ = f (⃗z) changes the distribution according to

π̄(⃗x) = π(⃗z)

∣∣∣∣det
∂f (⃗z)

∂⃗z

∣∣∣∣
−1

= π(f −1 (⃗x))
∣∣∣∣det

∂f −1 (⃗x)
∂⃗x

∣∣∣∣
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A more complicated transformation then leads to a more complicated transformed distribution.
Splines act in a finite domain.

−B 0 B

x

−B

0

B

g θ
(x

)

RQ Spline

Inverse

Knots

−B 0 B

x

0

1

g
′ θ(
x

)

figures from
Durkan et al.
[arXiv:1906.04032]
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Piecewise Transformations (Splines)
piecewise linear coupling function:

The NN predicts the pdf bin heights Qi .

pdf cdf

Müller et al. [arXiv:1808.03856]

C =
b−1
∑
k=1

Qk + αQb, α = x−(b−1)w
w

∣∣∣∣
∂C

∂⃗x

∣∣∣∣ = ∏
i

Qbi
w

rational quadratic spline coupling function:

The NN predicts the cdf bin widths, heights, and derivatives that go in ai&bi .

cdf

Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, ’82]

C =
a2α2 + a1α + a0
b2α2 + b1α + b0

still rather easy

more flexible
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Taming Jacobians: Bipartite Flows (“INNs”)

κx∈A(x ∈ B) & κx∈B (x ∈ A)

⇒ Coordinates are split in 2 sets, transforming each other.
forward:

yA = xA

yB,i = C (xB,i ; κ(xA))

inverse:
xA = yA

xB,i = C−1(yB,i ; κ(xA))

Jacobian:∣∣∣∣∣
1 ∂C

∂xA

0 ∂C
∂xB

∣∣∣∣∣ = ∏
i

∂C (xB,i ; κ(xA))

∂xB,i

NN permutation

xA

xB

yx

RQS(xB ; κ(xA))
Dinh et al. [arXiv:1410.8516]
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Machine Learning for Particle Physics

This week’s plan:

1 Introduction (fits, optimization, and NNs)

2 Regression and Classification

3 Deep Generative Models
▶ Normalizing Flows
▶ Denoising Diffusion Probabilistic Models (DDPMs)
▶ Conditional Flow Matching (CFM)
▶ Applications
▶ How to evaluate Generative Models

4 Anomaly Detection and Data-Driven Methods
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Denoising Diffusion Probabilistic Models

by Sofia Palacios Schweitzer and Ho et al. [arXiv:2006.11239]

q(x1, . . . , xT |x0) = ∏T
t=1 q(xt |xt−1), with q(xt |xt−1) = N (xt ;

√
1− βtxt−1, βt)

and a noise schedule βt .

⇒ now learn inverse: pθ(xt−1|xt) = N (xt−1; µθ(xt , t), σ2
θ (xt , t))

LDDPM = 1
2σ2

t

β2t
(1−βt )β̄t

|ϵt − ϵθ(xt , t)|2

more math and details by Sofia Palacios Schweitzer et al. [arXiv:2305.10475] and Ho et al. [arXiv:2006.11239]
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by Sofia Palacios Schweitzer and Ho et al. [arXiv:2006.11239]

q(x1, . . . , xT |x0) = ∏T
t=1 q(xt |xt−1), with q(xt |xt−1) = N (xt ;

√
1− βtxt−1, βt)

and a noise schedule βt .

⇒ now learn inverse: pθ(xt−1|xt) = N (xt−1; µθ(xt , t), σ2
θ (xt , t))

LDDPM = 1
2σ2

t

β2t
(1−βt )β̄t

|ϵt − ϵθ(xt , t)|2

more math and details by Sofia Palacios Schweitzer et al. [arXiv:2305.10475] and Ho et al. [arXiv:2006.11239]
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Denoising Diffusion Probabilistic Models Training

Sofia Palacios Schweitzer et al. [arXiv:2305.10475]

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024 35 / 73



Denoising Diffusion Probabilistic Models Sampling

xT ∼ N (0, 1)

DDPMt = T ϵθ xT−1 =
1√

1−βT

(
xT − βT√

β̄T

ϵθ

)
+ σTzT

zT ∼ N (0, 1)

DDPMt = T − 1 ϵθ ... x1 =
1√
1−β2

(
x2 − β2√

β̄2
ϵθ

)
+ σ2z2

z2 ∼ N (0, 1)

DDPMt = 1 ϵθ

x0 =
1√
1−β1

(
x1 − β1√

β̄1
ϵθ

)

Sofia Palacios Schweitzer et al. [arXiv:2305.10475]
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Machine Learning for Particle Physics

This week’s plan:

1 Introduction (fits, optimization, and NNs)

2 Regression and Classification

3 Deep Generative Models
▶ Normalizing Flows
▶ Denoising Diffusion Probabilistic Models (DDPMs)
▶ Conditional Flow Matching (CFM)
▶ Applications
▶ How to evaluate Generative Models

4 Anomaly Detection and Data-Driven Methods
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Conditional Flow Matching: Connecting Normalizing Flows and Diffusion
Models

continuous time evolution−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t
by Sofia Palacios Schweitzer and Ho et al. [arXiv:2006.11239]

Continuous Normalizing Flow: x1 = x0 +
∫ 1
0 v(x , t) dt ⇔ d

dt x(t) = v(x , t)

⇒ connect data and latent space with ODE instead of discrete bijector
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Conditional Flow Matching Setup
Huang/Yeh [arXiv:2012.04228]

Ordinary Differential Equation
d
dt x(t) = v(x(t), t), with x(t = 0) = x0

Continuity Equation
∂
∂t p(x , t) +∇x (p(x , t)v(x , t)) = 0

Diffusion Process

p(x , t) =

{
pdata(x) t → 0
platent(x) ≡ N (x ; 0, 1) t → 1
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Conditional Flow Matching Training
naive regression of v(x , t):

LFM =
〈
(vθ(x , t)− v(x , t))2

〉
t∼U [0,1]
x∼p(x,t)

but: v(x , t) and p(x , t) are not tractable!

Solution:
v(x , t|x0) and p(x , t|x0) are!

LCFM =
〈
(vθ(x(t|x0), t)− v(x(t|x0), t|x0))2

〉
t∼U [0,1]
x0∼data

Sofia Palacios Schweitzer et al. [arXiv:2305.10475]
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Machine Learning for Particle Physics

This week’s plan:

1 Introduction (fits, optimization, and NNs)

2 Regression and Classification

3 Deep Generative Models
▶ Normalizing Flows
▶ Denoising Diffusion Probabilistic Models (DDPMs)
▶ Conditional Flow Matching (CFM)
▶ Applications
▶ How to evaluate Generative Models

4 Anomaly Detection and Data-Driven Methods
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Applications of Generative Models

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

Event Generation
p(momenta, angles|process)

Detector Simulation
p(particle shower|initial condition)

Inverse Problems p(parameters|data)
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Event Generation uses Importance Sampling.
I =

∫ 1
0 f (⃗x) dx⃗

flat sampling:
inefficient.

I = ⟨f (⃗x)⟩x∼uniform

importance sam-
pling: find g close to f

I =

〈
f (⃗x)

g (⃗x)

〉

x∼g (x)

multichannel: one
map per channel

I = ∑
i

〈
αi (x)

f (⃗x)

gi (⃗x)

〉

x∼gi (x)
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Neural Importance Sampling — Results for qq̄ → γ/Z/Z ′ → e+e−
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Heimel, CK et al.
[2212.06172, SciPost]
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Applications of Generative Models

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

Event Generation
p(momenta, angles|process)

Detector Simulation
p(particle shower|initial condition)

Inverse Problems p(parameters|data)
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Detector simulation is computationally expensive.
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Detector simulation is computationally expensive.

realism

speed

FastSim

Generative AI

?

?

??
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Generative Models are fast and faithful surrogates.

Generation time per shower in ms.

Normalizing-Flow-based models are very promising!
DDPM and CFM models have even better quality, but are slower.

Ernst, CK et al. [2312.09290]

CaloDREAM [2405.09629]CaloDiffusion [2308.03876]
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Applications of Generative Models

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

Event Generation
p(momenta, angles|process)

Detector Simulation
p(particle shower|initial condition)

Inverse Problems p(parameters|data)
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Inverse Problems: learn p(parameters|data)

A DGM can learn p(parameters|data) directly.

Examples:
CP-observables: Ackerschott et al. [arXiv:2308.00027]

Neutrino momenta: [arXiv:2207.00664, 2307.02405]

Or be used for unfolding detector effects:
p(xpart|xreco)

Bieringer et al. [2012.09873, SciPost]

[2212.08674, 2310.17037, 2404.18807]
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Machine Learning for Particle Physics

This week’s plan:

1 Introduction (fits, optimization, and NNs)

2 Regression and Classification

3 Deep Generative Models
▶ Normalizing Flows
▶ Denoising Diffusion Probabilistic Models (DDPMs)
▶ Conditional Flow Matching (CFM)
▶ Applications
▶ How to evaluate Generative Models

4 Anomaly Detection and Data-Driven Methods
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How to evaluate generative models?

In text / image / video generation: “by eye”.
⇒ Our brains are incredible good at this task, but it doesn’t scale.

In high-energy physics: need to find something better!
⇒ We want to correctly cover p(x) of the entire phase space.

1 Can look at histograms of derived features / observables.

⇒ To quantify, we use the separation power of high-level feature histograms:

S(h1, h2) =
1
2 ∑nbins

i=1
(h1,i−h2,i )2
h1,i+h2,i

But: this is just a 1-dim projection!

imagined with Meta AI.
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A Classifier provides the “ultimate metric”.

According to the Neyman-Pearson Lemma we have:
The likelihood ratio is the most powerful test statistic to distinguish two samples.

A powerful classifier trained to distinguish the samples should therefore learn (something

monotonically related to) w = pdata
pmodel

.

If this classifier is confused, we conclude ⇒ pdata(x) = pmodel(x)

⇒ This captures the full phase space incl. correlations.

2 Now, the AUC provides a single number
to compare different models.

But: are AUCs of different models really comparable?

CK/D. Shih [2106.05285, PRD]
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A Classifier tells us much more about the model.
Failure modes of the model can now be seen in the w = pdata

pmodel
histogram:

Data manifold not pop-
ulated by model:
⇒ missed feature

Data manifold over-
populated by model:
⇒ mismodeled feature

R. Das, CK, et al. [2305.16774, SciPost]

Cluster plots show where events lie in phase space: figures by B. Schmidthaler / M. Rosendorf
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How to decide which model is closest to the reference:
the Multiclass Classifier

A multi-class classifier:
Train on submission 1 vs. submission 2 vs. . . . vs. submission n
and evaluate the log posterior :

L = ⟨log (p(x∈class i |xtaken from j ))⟩ j ∈ {submission k,Geant4}
3 As metric: evaluate with Geant4 Lim et al. [2211.11765, MNRAS]

As cross-check: validate with all submissions j
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Machine Learning for Particle Physics

This week’s plan:

1 Introduction (fits, optimization, and NNs)

2 Regression and Classification

3 Deep Generative Models

4 Anomaly Detection and Data-Driven Methods
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What is Anomaly Detection?
We distinguish different types of Anomaly Detection:

Out-of-Distribution Anomaly Detection Group Anomalies

Real-world applications are usually about out-of-distribution events:
Finance (credit card fraud, malicious transactions, . . . )

IT / Network Security

Medical imaging
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Anomaly Detection: Out Of Distribution Data
Train an AutoEncoder on “normal” data:

OOD samples will then be harder to reconstruct:

Farina, Nakai, Shih [1808.08992 PRD]

QCD top New Physics

input

output

difference

Additional techniques like self-supervision and contrastive learning increase robustness.
Dillon et al. [2301.04660]

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024 58 / 73



Anomaly Detection in Overdensities: Bump Hunts

Assumptions
signal is localized in m

background in m is smooth

∃ additional discriminating features x

Select events with

⇒ pdata
pbackground

∼ psignal
pbackground

1 Scan Signal Region (SR) across m

2 Perform background fit and obtain
p-value for bump.
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The LHC-Olympics looked at di-jet Resonances.
LHC Olympics R&D dataset:

1,000,000 QCD dijet events

1,000 signal events W ′ → X (→ qq)Y (→ qq)

mW ′ = 3.5TeV,
mX = 500GeV, mY = 100GeV

In SR, 3.3TeV < mJJ < 3.7TeV:
▶ 121,352 bg events
▶ 772 sg events

S/
√
B = 2.2

LHCO: G. Kasieczka et al. [2101.08320]
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We can get the likelihood ratio using ML: Classifiers.

According to the Neyman-Pearson Lemma we have:

The likelihood ratio is the most powerful test statistic to distinguish two samples.

A powerful classifier trained to distinguish the samples should therefore learn
(something monotonically related to) this.

Classification without Labels (CWoLa)
learns from mixed samples.

An optimal classifier is also optimal for
distinguishing S from B.

E.M. Metodiev, B. Nachman, J. Thaler, [1708.02949 JHEP]
“Coala Hunting” via midjourney.com ⇒
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Simulation-based approaches are model-dependent.

Simulation-based approaches:

fully supervised:
train classifier on simulated signal and background

▶ depends on quality of simulation
▶ high signal model dependence
▶ provides upper limit on all approaches

idealized anomaly detector:
train classifier on data and simulated background

▶ depends on quality of simulation
▶ still background model dependent
▶ provides upper limit on data-driven anomaly detection
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Data-driven approaches are background model-independent.

Anomaly Detection with Density Estimation (ANODE):

train “outer” density estimator
pdata(x |mJJ ∈ SB)

train “inner” density estimator
pdata(x |mJJ ∈ SR)

compute
pinner(x |mJJ )
pouter(x |mJJ )

for mJJ ∈ SR

robust against correlations, but harder learning task.
B. Nachman, D. Shih, [2001.04990, PRD]
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Anomaly Detection in Overdensities: Bump Hunts

Classifying Anomalies THrough Outer Density Estimation (CATHODE):

train “outer” density estimator
pdata(x |mJJ ∈ SB)

sample “artificial” events from
pouter(x |mJJ ∈ SR)

can also oversample

train a classifier on these samples vs data

A. Hallin, CK et al. [2109.00546, PRD]
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Anomaly Detection in Overdensities: Bump Hunts

Significance Improvement Characteristic = TPR/
√
FPR
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A. Hallin, CK et al. [2109.00546, PRD]

⇒ These strategies are now being explored in ATLAS and CMS.
ATLAS [2005.02983, PRL], CMS [CMS-PAS-EXO-22-026]
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Anomaly Detection in deployment: recent CMS results
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CWoLa Hunting: A Signal Regions Data
Bkg. fit

2000 2500 3000 3500 4000 4500 5000 5500
mjj (GeV)

-4
-2
0
2
4

D
at

a
−

Fi
t

U
nc

.

101

102

103

104

105

Ev
en

ts
 / 

10
0 

G
eV

CMSPreliminary 138 fb−1 (13 TeV)

Tag N' Train: A Signal Regions Data
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CATHODE: A Signal Regions Data
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CATHODE-b: A Signal Regions Data
Bkg. fit
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[CMS-PAS-EXO-22-026]
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Machine Learning for Particle Physics

This week’s plan:

1 Introduction (fits, optimization, and NNs)

2 Regression and Classification

3 Deep Generative Models

4 Anomaly Detection and Data-Driven Methods
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Data-driven methods I: Experimental Background Estimation

ATLAS [arXiv:2301.03212]

Nonresonant Higgs pair production: ggF/VBF → HH → b̄bb̄b
Upper limits on anomalous couplings.
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Data-driven methods I: Experimental Background Estimation

Nicole Hartman [ATLAS Thesis Award Presentation and arXiv:2301.03212]

⇒ Reweighting with a classifier: 7.5% extrapolation uncertainty, ATLAS[arXiv:2301.03212]

⇒ Interpolate with Normalizing Flow: no extrapolation uncertainty, Nicole Hartman, PhD Thesis
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https://cds.cern.ch/record/2878542?ln=en


Data-driven methods II: the DM density in the Milky Way from Gaia Data.
[www.esa.int]

ESA Mission launched in 2013

measures: position, proper motion, color, and magnitude of stars

some even have radial velocities and parallax (distance) available

DR3 has 1.8 · 109 stars, 1.4 · 109 of them have 6D data, DR2 has 1.7(1.3) · 109.
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https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2022/06/gaia_observes_the_milky_way/24305944-1-eng-GB/Gaia_observes_the_Milky_Way.jpg


Data-driven methods II: the DM density in the Milky Way from Gaia Data.

Stellar Number Density Lim et al. [arXiv:2305.13358]
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Data-driven methods II: the DM density in the Milky Way from Gaia Data.

Dark Matter Density Lim et al. [arXiv:2305.13358]
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Ressources again

If you have questions, please ask!

This lecture is based on:
⇒ “Modern Machine Learning for LHC Physicists”,

SS2022 lecture notes of Heidelberg University, arXiv: 2211.01421

Further Reading:

Summary of HEP-ML papers: “HEPML - Living Review”
https://iml-wg.github.io/HEPML-LivingReview/

Tipps for efficient training of NNs:
https://karpathy.github.io/2019/04/25/recipe/

About good coding practices in science: https://goodresearch.dev/
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