1. Teurs Reduction 1 1BPS

Scotlermp Amplitudes	· · · · · · · · · · · · · · · · · · ·
(SA) Are fundamental la	uildy blades in OFT
с~ Sdp 1л	{
Exongle $99 \rightarrow 99$ $\epsilon_{2}^{\vee} \epsilon_{3}^{\circ} \circ 2 = \epsilon_{1}^{\vee} \epsilon_{2}^{\vee}$ $\epsilon_{2}^{\circ} \epsilon_{3}^{\circ} \circ 2 = \epsilon_{1}^{\vee} \epsilon_{2}^{\vee}$	Lovente Covoient a. a. Es Es A pro
Et an Eg ay	planstas vectors
(nerenous to quorontee gouge	"neutrolize"
only physical degrees of freedou one allowed to propagate)	d leave an object that is Little-grap Covoriant

In these lectures we will four on Apropor
[no time unfaturately for on-shell methods !]
what can we say is general ? work by example:
gg → H (Hggs production @ 2HC)
. work in QCD
. Ponty involout theory!
S' = En En En April 2 April 2 Simplifie Simplifie
I we "see" this has to be a
Purk-2 Scolor!
$H(q) = P + P_2 \qquad q^2 = M_H^2$
μ ²
1. Lorentz Corgronce implies:
Apripe = Fr Papa Papa + Fz Papa Papaz + F3 Papa Papaz
+ FL PZMAPZMI + F5 JMAMZ 2

2.	gluon s physical En P1 = E2 P2 = 0	· · ·
· · · ·	Only port that nurvives is	· ·
· · · ·	Ар.р. = F3 p2pn Pape + F5 gpapez	· · ·
3.	gouge Invoionce = Word Identifier	
· · · ·	$P_{1\mu_{1}}A_{\mu_{1}\mu_{2}}E_{2}^{\mu_{2}} = P_{2\mu_{2}}A_{\mu_{1}\mu_{2}}E_{1}^{\mu_{1}} = 0$	· · ·
· · · ·	0=(F3 p1-p2 + F5) E2 p1	· ·
· · · ·	= (F3 p1 p2 + F5) E1 p2	· ·
	$J\delta e (p_1 + p_2)^2 = m_{H}^2 = 2p_1 p_2 ; p_1^2 = 0$	· · ·
· · · ·	$F_3 = -\frac{F_5}{p_{1} \cdot p_2} = -\frac{2F_5}{m_{\mu}^2}$	· · ·
· · ·	· · · · · · · · · · · · · · · · · · ·	2

Lo using horentz lanvoionce & gouge anvoionce we find
$A_{\mu,\mu_2}^{\text{phys}} = F \left[g_{\mu,\mu_2} - \frac{2 P_{2\mu,n} P_{4\mu_2}}{M_{H^2}} \right]$
F 15 collect a scalor former factor, ats
explicit from despends on # loops etc
F(m ² , m ² _q , E) phi , E) DIN-REGULATOR if quarks have moments
this general form is volid @ any nouser of loops!
$S = F(m_{H_1}^2) \left[\sum_{n \in \mathbb{Z}_2} \frac{2}{m_{H_1}^2} \sum_{n \in \mathbb{Z}_2} \sum_{n \in \mathbb$
this proceeding is collect TENSOR DECOMPOSITION. La Couryou prove S = 0 only for equal helichy 9? 3

start pour: PROJECTOR METHOD $A_{\mu,\mu_2}^{phy_3} = F\left[g_{\mu,\mu_2} - \frac{2P_{2\mu,n}P_{4\mu_2}}{m_{\mu_2}^2}\right] (K)$ on the other hand, Feynmon Dignous @ L-loops provide explant representation for Annual : @ 160p $\frac{d^{D}_{k}}{d^{D}_{k}} = - \propto \int \frac{d^{D}_{k}}{(2\pi)^{D}} T_{r} \left[\frac{1}{k-m} \frac{1}{k \cdot p_{r}} - \frac{1}{k \cdot p_{r}} \frac{1}{k \cdot p_{r}} \right]$ and realist expression from Sec.) >-not immediately obvious how there can be put in form (A), it requires performing algebra, interration -etc, non triviel for more complicated processor

Form of (*) provides seed to general solution => Defne a Projector Operator that projects out Corrent à indices : $P^{\mu_{n}\mu_{2}} = C \left[g^{\mu_{n}\mu_{2}} - \frac{2 P_{2}^{\mu_{n}} P_{1}^{\mu_{2}}}{m_{\mu^{2}}} \right]$ mich that [Р^йий² [- дий] [- дигий] А разии F 1 from over pol => METRIC 14 the vector space of "tensors" с (днация 2 ра рамя) (дриция mH2) (дриция $\frac{2 P_{1\mu} P_{1\mu}}{m_{\mu}} F_{=}$ $\frac{2p_1^2p_2^2}{m_1^4}\right) CF =$ $= \left(\begin{array}{c} D - \frac{2 p_1 p_2}{m_H^2} - \frac{2 p_1 p_2}{m_H^2} \\ \# space - fime \begin{array}{c} D \\ D \\ \end{array} \right)$ Used M4 = (A+P)2 1 . 5

 $(D-2)CF \equiv F$ $\Rightarrow \int C = \frac{1}{D-2} \int$ so the projector reads $\frac{p_{\mu_{\mu}\mu_{z}}}{D-2} \begin{bmatrix} q_{\mu_{\mu}\mu_{z}} & \frac{2}{p_{z}} \frac{p_{z}\mu_{\mu}}{p_{\mu}} \\ \frac{1}{m_{\mu}} \end{bmatrix} \begin{bmatrix} q_{\mu_{\mu}\mu_{z}} & \frac{2}{m_{\mu}} \frac{p_{z}\mu_{\mu}}{p_{\mu}} \end{bmatrix}$ necessary to use dimensional regulorsohoer By Applying this projector on $\frac{d^{0} k}{k} = - \propto \int \frac{d^{0} k}{(2\pi)^{0}} \operatorname{Tr} \left[\frac{1}{k} \operatorname{Ym} \frac{1}{k} \operatorname{Ym} \frac{1}{k} \operatorname{Ym} \frac{1}{k} \right]$ contracted, and we are left oll indices oze with "scolor intepols 4 Numerator is a polynamial 14 scolor products! { 1, K², k p1, k p2 } $\int \frac{d^{0}k}{(2\pi)^{D}}$ $(k^2 m^2)((h+p_1)^2 - m^2)((h+p_2)^2 - m^2)$

General Formalism: A = EFi Ti - Kupors 1 Tform Foctors Ti should be thought of as elawards of a vector sponce, we can define "duck vectors" => Ti (for ex build out of Ej") e "scalor product" in this vector spore Using $\sum_{pql} \varepsilon_j^{h} \varepsilon_j^{r} = -g^{hv} \pm$ Depend op on condutors we used to define Tr (restrict vector space) Ti-Tj implier 5 (= then $C_{k}^{b} = [M]_{jk}$ $P_{j} = \sum_{k} C_{k}^{(j)} T_{k}^{\dagger}$ where $\mathsf{M}_{ij} = \begin{bmatrix} \mathsf{T}_{i}^{\dagger}, \mathsf{T}_{j} \end{bmatrix}$ Che Ch! L'neor Algebra.

IRREDUCIBLE SCALAR PRODUCTS

@ 1 loop, all scolor products can always be rewritten ruterns of the propagators of the problem EXAMPLE ABONE $\begin{array}{l}
 D_{1} = k^{2} \cdot m^{2} \\
 D_{2} = (k + p_{1})^{2} - m^{2} \\
 D_{3} = (k + p_{1} + p_{2})^{2} - m^{2}
 \end{array}$ K K K P1 K P2 e $k k = D_1 + M^2$ $k \cdot p_1 = \frac{1}{2} \left[D_2 - D_1 - p_1^2 \right]$ $k p_2 = \frac{1}{2} \left[D_3 - D_2 - \rho_2^2 - 2\rho_1 \rho_2 \right]$ become of the so substituting these, all scalar into $\int \frac{d^{2}k}{(2\pi)^{D}} \frac{1}{D_{1}^{a_{1}}D_{2}^{a_{2}}D_{3}^{a_{3}}} = \mathcal{I}(\theta_{1}, \theta_{2}, \theta_{3})$ $\theta_{1} \in \mathcal{H}$ type $a_i \in \mathbb{Z}$

This construction can be generalized for any procen => Scattering Acuplinde dways decomposed into Tensors & Form Factors 1-LOOP CASE IS SPECIAL @ 1 loop n points] n propagans $p_{2}^{2} \rightarrow p_{n-1}^{k}$ Dr. - Dn $D_1 = (k + p)^2 - M_1^2$ $\left(Dn = \kappa^2 - Mn^2\right)$ n-scols products 2K K L scolor integrals will dways be of the type $\int \frac{d^{D}k}{(2\pi)^{D}} \frac{1}{D_{1}} \frac{d^{A}n}{D_{n}}$ $= I(a_1 - a_n)$ $a_i \in \mathbb{Z}$ 8

SCALAR FEYNMAN INTEGRALS @ L-loops	•
@ L loops, L>2, not all scolor products	•
con be expressed in terms of Di we want to	•
geveralse the notation:	•
CONDINATORIC EXERCISE SHOWS THAT L Logs N point:	5
# SCAL PRODE P 15:	•
$\int_{a}^{b} = L\left(N + \frac{L}{2} - \frac{1}{2}\right) \implies L = 1 \left \begin{array}{c} P = N \\ P \end{array} \right $	
of Legs not indep @ 1 Loop P=1).
(con you prove A?)	•
EXAMPLE : Two Roop gluon propagation	0
enferrere $l=2$ $N=2$ $P=2(2+1-\frac{1}{2})=5$ k_1 3 proposed of t 5 scolor hadnests	•
$S_{1} = \frac{1}{1} \frac{K_{1}^{2} K_{2}}{K_{1} K_{2}} \frac{1}{K_{1} K_{2}} \frac{1}{K_{1} K_{2}} \frac{1}{K_{1} K_{2}} \frac{1}{K_{1} K_{2}} \frac{1}{K_{2} K_{2}} \frac{1}{K_{1} K_{2}$	

greu propoptors	$\begin{cases} k_1^2 \\ k_1^2 \\ k_1^2 \\ (k_1+k_1+p)^2 \end{cases} \text{possible choice for} \\ (sp_s k_1-p) k_2 p \\ (k_1+k_1+p)^2 \end{cases}$
$\begin{cases} k_{1} \cdot k_{1} = D_{1} = \\ k_{2} \cdot k_{2} = D_{2} = \\ k_{1} \cdot k_{2} = \frac{1}{2} \begin{bmatrix} D_{3} \\ D_{3} \end{bmatrix}$	k_{1}^{2} $= k_{2}^{2}$ $= 2k_{1} \cdot p - 2k_{2} \cdot p - D_{1} - D_{2} - p^{2} \int$ $= 5_{1} 5_{2}$ $= 5_{1} 5_{2}$ $= 5_{2} 5_{3} $
FAMILY OF IN $\int \frac{d^2 k_1}{(2\pi)^3} \frac{d^2 k_2}{(2\pi)^3}$	$\frac{\text{TEGRALS} :\Rightarrow \text{or dject of study}}{\sum_{1}^{b_{1}} \sum_{2}^{b_{2}}} = D_{1}^{a_{1}} D_{2}^{a_{2}} D_{3}^{a_{3}} = T(a_{1} a_{2} a_{3} : -b_{1} - b_{2})$
	humerators

General Nomencloture: $T(a_1, a_{\tau}, b_{\tau}, b_{\tau}, b_{\sigma}) = \int \left[\frac{L}{11} \frac{d^{D}ke}{(2\pi)^{D}} \frac{\int b_{1}}{D_{1}^{a_{1}} \cdots \int_{\sigma}^{b_{\sigma}} \frac{b_{\sigma}}{D_{\tau}^{a_{\tau}} \cdots D_{\tau}^{a_{\tau}}} \right]$
I(1,, 1; 0,,0) = defines the <u>TOP SECTOR</u> OF <u>TOP-TOPSOGY</u> , e the graph we are considering
EXAMPLE: a 2- wap double box for gg-> yg in aco
$\frac{1}{2} \begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix} \begin{pmatrix} 1\\ 5\\ -1\\ -1\\ 1 \end{pmatrix} \begin{pmatrix} 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1 \end{pmatrix} \begin{pmatrix} 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ $
We draw groph onociated to scolor intergral, we mean? - No Feynma Riles -

eartrartes to	these dy en Ele etc
5	SKIP
eountomy shows	9 sceln products & 2ISPs 7 propagetors
$2 \qquad k_{1} + P_{12} \qquad k_{11} + P_{11} \qquad k_{11} $	FAMILY FAMILY k_{1}^{2} k_{2}^{2} $(k_{1}-k_{2})^{2}$ $(k_{2}-p_{1})^{2}$ $(k_{2}-p_{1})^{2}$ $(k_{2}-p_{1})^{2}$ $(k_{2}-p_{1})^{2}$ $(k_{2}-p_{1})^{2}$ $(k_{2}-p_{1})^{2}$ $(k_{1}-p_{1})^{2}$ $(k_{1}-p_{1})^{2}$

to Intervolo we are interested in will be
$T(n_1,, n_7; n_8, n_9)$ $\begin{cases} n_1,, n_7 \ge 0 \\ n_8, n_9 \le 0 \end{cases}$
· I(1,1,1,1,1,1,0,0) ~ s TOP SECTOR TOP TOPOLOGY
we call all into obtained remaining one or more propagets in all possible ways subsectors or sub TOPOLOGIES -> they give hibtopology tree
For example I(0, 1, 1, 1, 1, 1, 1, 0, 0)
pinde T it's a subsector pinde T pinch T T(0,1,1,1,1,0,1,0,0) = T subsector of etc 13

-> HERE In these coses we after say that subsectors are
obtained Ly PINCHING Pagaptors of toporctor
INTEGRAL FAMILY & SUBTORUOGY TREE
2
$\mathcal{A} \times \mathcal{A} \times \mathcal{A}$
X X
10

Now, as you can image if we stort writing down all Ferninan digrams for a gren problem performe projection to compute scolor prue fators, and fully collect all scolar intypes, we will in general find havge number of apparently different) $0 \ 1 \log 0 \ (100) \ ints$ Impyelo -> @ 2 loops 0 (10000) mts $# \begin{array}{c} gg \rightarrow gg \\ \begin{pmatrix} u \\ QCD \end{pmatrix} \end{array}$ O 3 loops $O(10^7)$ ints surple could notories - clearly hoppelen to compute all of them one by one -Luctuly, not all these integrals one independent! 15

INTEGRATION BY PARTS & MASTER INTEGRALS We work u Dim Regularization to regular te UN I IR singulation _ The assum of due seg ruepty that we care perform a generic tronsformation ou loop momenta $k_i^{\mu} \rightarrow k_i^{\mu} + \partial \mathcal{J}_j^{\mu}$ $\mathcal{N}_{j} = \{k_{j}^{\mu}, p_{j}^{\mu}\}$ INFINITESHALLY $\Rightarrow f(\vec{k},\vec{q}) \rightarrow f(\vec{k},\vec{q}) + a \nabla_{j}^{\mu} \frac{2}{\partial K_{i}} f(\vec{k},\vec{q})$ complete set of momenta plus : $d^{0}k_{i} \rightarrow (1+ab) d^{0}k_{i} \quad if \quad \forall j = k_{i}^{h}$ Invoiour of integral icuple there view $\int \frac{L}{\Pi} \frac{d^{0}ke}{(2\pi)^{0}} \quad O_{AJ} \neq (\vec{k}, \vec{q}) = 0$ D. K; = D + KJ; 157 to red forb Jacobiau ! 16 where Dij = di Jj 121

Onj generate a Lie Algebra -
let's work these identifies in a human fieldy form - gren . FAMILY OF INTEGRALS:
$\int \frac{L}{\Pi} \frac{d^{0} k_{2}}{(2\pi)^{n}} \left[\frac{\partial}{\partial k_{4}^{n}} \int_{1}^{\mu} \frac{\int_{1}^{b_{1}} \frac{\int_{1}^{b_{1}} \frac{\int_{1}^{b_{2}} \frac{\int_{1}^{b$
it's nothing but generalization of 1-dimensional $t^{(N)}$ $d_X = \frac{2}{2X} f(X) = 0$ if $\int f(X) dX < \infty$
=> Usually referred to 00 INTEGRATION BY PARTS identification (1BPS) [Chetyrkin, Tikachov [81]
18

· by inspection, it is clean that by differentiating We generate interpols in the some FATILY 10 we expect that IBPs above opposently different rutends in some founder Using Lie Group property one can pove frimally that all interals can be expensed in tums of a FINITE NUMBER OF MASTER INTS. => they are a BASIS of all interrolo [A.V. Smirnov, A.V. Petukhov 2010] Proof dour is NOT CONSTRUCTIVE. Let's see how this works ie prochee

TADPOLE In Lechnzeo I will work $= \int \frac{d^{2}k}{(2\pi)^{2}} \frac{1}{k^{2} - m^{2} + i\epsilon}$ 14 Elideon V Convenence Wick $\int \frac{d^{2}k}{(2\pi)^{2}} \frac{d^{2}k}{k^{2}+m^{2}}$ $\int \frac{d^{2}k}{(2\pi)^{p}} (k^{2}+m^{2})^{n}$ I(h) Fourly $\int \frac{d^{0}k}{(2\pi)^{0}} \frac{\partial}{\partial k^{\mu}} \left[k^{\mu} \frac{1}{(k^{2}+m^{2})^{\mu}} \right] = 0$ 1 IBP $-\frac{n k^{\mu}}{(k^{2}+m^{2})^{n+1}} 2k_{\mu}$ $\frac{\partial}{\partial k^{\mu}} \frac{k^{\mu}}{\left(k^{2} + m^{\nu}\right)^{\mu}} = \frac{D}{\left(k^{2} + m^{2}\right)^{\mu}}$ $= \frac{D}{(k^{2}+m^{2})^{n}} - 2n \frac{k^{2}}{(k^{2}+m^{2})^{n+1}} = \frac{D-2n}{(k^{2}+m^{2})^{n}} + \frac{2nm^{2}}{(k^{2}+m^{2})^{n+1}}$ 20

which implies
$(D-2n) I(n) + 2n m^2 I(n+1) = 0$
$T(n+1) = -\frac{(D-2n)}{2nm^2}T(n)$
$T(2) = -\frac{D-2}{2m^2} T(1)$
$T(3) = -\frac{D-4}{4m^2} T(2) = \frac{(D-4)(D-2)}{8m^4} T(1)$
We say that tadpule founday has <u>ONE</u> <u>Moster</u> instepral, cou be chosen as I(1)
In this core, early to solve IBP for generic "n"
in general this will not be possible -> we
con instead "generate" and "Flive" I.BPS for
specific charges of indices 191,, 8n

. ONE LOOP BUBBLE CEuclideon figuature)
$\frac{1}{(2\pi)^{D}} = \int \frac{d^{P}k}{(2\pi)^{D}} \frac{1}{(k^{2}+m^{2})^{O}((k+p)^{2}+m^{2})^{b}}$
= I(9,6) freedly
I can derive 2 (BPs now :
$ (1) \int \frac{d^{0}k}{(2\pi)^{0}} \frac{\partial}{\partial k^{\mu}} \left[k^{\mu} \frac{1}{D_{1}^{a}} \frac{1}{D_{2}^{b}} \right] = 0 $
$(2) \int \frac{d^{2}k}{(2\pi)^{2}} \frac{\partial}{\partial k^{m}} \left[p^{M} \frac{1}{D_{1}^{e} D_{2}^{b}} \right] = 0$
Danve them for specific volues of $(a, b) = d(1, 1);$
Prove that $I(1,2) = I(2,1) = \frac{(D-2)}{2m^2(p^2 + Lm^2)} I(1,0) - \frac{D-3}{p^2 + Lm^2} I(1,1)$ 22

> this problem has 2 monter intepols I(1,0) = the TadyalaI(1,1) = the one loop bulldleQUOTE RESULT REDUCIBLE INTEGRALS Loot pope + ZAPORTA Consider the monten triougle $k = p^{1}$ $k = p^{1}$ $k = p^{2} = \int \frac{d^{0}k}{(2\pi)^{0}} \frac{1}{(k^{2}(k-p_{1})^{2}(k-p_{1}-p_{2})^{2})^{2}}$ $k = p^{2} = \int \frac{d^{0}k}{(2\pi)^{0}} \frac{1}{(k^{2}(k-p_{1})^{2}(k-p_{1}-p_{2})^{2})^{2}}$ $D_{1} = D_{2} = D_{3}$ $p_1^2 = p_2^2 = 0$ $q_2^2 (p_1 + p_2)^2 = 5$ with three IBPS $\int \frac{d^{2}k}{(2\pi)^{2}} \frac{\partial}{\partial k^{\mu}} \begin{cases} P_{1}^{\mu} \\ P_{2}^{\mu} \\ k^{\mu} \end{cases} = \frac{1}{D_{1}^{2}} \frac{1}{D_{2}^{2}} = \frac{1}{D_{2}^{2}} \frac{1}{D_{2}^{2}} = \frac{1}{D_{2}^{2}} \frac{1}{D$ 23

EXFRCISE Prove
SI(1,1,2) + (D-4) I(1,1,1) = D
SI(1, 1, 2) + I(1, 0, 2) + I(2, 0, 1) = 0
SI(2, 1, 1) + T(1, 0, 2) + T(2, 0, 1) = 0
NERICE
- hot sel IBPs ore independent ! $2 = 3$
_ soluing 1)
$I(1,1,2) = -\frac{D-4}{S} I(1,1,1)$
putting at (mto 2)
$(D-L_{1})I(1,1,1) = I(1,0,2) + I(2,0,1)$ trougle gets "roduced" to bubbles ! 24

hohemg I(1, 0, 2) = I(2, 0, 7)we find $I(1,1,1) = \frac{2}{D-4}I(2,0,1)$ $= \frac{2}{D-4} - = \begin{bmatrix} (C(D)) \\ D-4 \end{bmatrix} - \begin{bmatrix} (C(D)) \\ D-4$ \neg reducing des bulle Insteps with integral with UV divergences IR dringences two poles get "mixed up" by IBRS In general, we solve IBPS in this way: generate all of them storting from "seed" integrolo toke big liver system, rolve at => [LAPD RTA ALGORITHM '00] 25