

Hybrid modelling for real-time urban pluvial flood mapping

Daan Buekenhout

Prof. Patrick Willems Prof. Ricardo Reinoso-Rondinel

PrePEP Conference – Bonn, Germany – 17 March 2025

Flood models

Saint-Venant equations (1D)

Flood models

Saint-Venant equations (1D) Shallow-water equations (2D)

Flood forecast

Radar precipitation estimation Precipitation <u>nowcast</u>

Computational constraint

Fast flood model hybrid model

Data-driven model

Gaussian Process

Dimensionality reduction EOF / PCA

Fast flood model hybrid model

Data-driven model

Gaussian Process

Dimensionality reduction EOF / PCA

Simplified flood model

Physically-based

Simplified (2D)

Rainfall no flood model

Accumulated rainfall

Dataset

QPE (2017-2023)

Dataset

QPE (2017-2023)

Training data Spatial transposition Cross-validation

Stratified sampling Rainfall over 2D zone

Results cross validation

		Original	Hybrid	Hybrid	Hybrid
μ_{CV} (σ_{CV})		1D2D	1D0D	2D	Rainfall
Dimensions	[#]	877k	23k	5.7k	86
Time / h _{sim}	[S]	188.8 (10.9)	11.7 (0.2)	2.5 (0.1)	0
CSI	[-]	-	0.69 (0.03)	0.62 (0.05)	0.32 (0.08)
R ² _{peak}	[m]	-	0.81 (0.06)	0.87 (0.06)	0.53 (0.14)
Δ_{peak}	[m]	-	0.01 (0.01)	0.03 (0.01)	0.07 (0.01)
RMSE	[m]	-	0.09 (0.01)	0.07 (0.01)	0.14 (0.01)

CSI	[-]	0.57
RMSE	[m]	0.14
R ² _{peak}	[m]	0.78
Δ_{peak}	[m]	0.029

CSI	[-]	0.57
RMSE	[m]	0.14
R ² _{peak}	[m]	0.78
Δ_{peak}	[m]	0.029

CSI	[-]	0.70
RMSE	[m]	0.05
R ² _{peak}	[m]	0.87
Δ_{peak}	[m]	-0.002

Urban pluvial flood

Hybrid model

- Dimensionality reduction
- Data-driven model
- Simplified model

Informative warnings

