

High resolution data assimilation in the GLORI Project

Virginia Poli^(1,2), Thomas Gastaldo^(1,2), Alfonso Ferrone⁽²⁾, Marcello Grenzi⁽³⁾, Enrico Minguzzi⁽²⁾, Davide Cesari⁽²⁾, Pier Paolo Alberoni⁽²⁾, Chiara Marsigli⁽²⁾, Carlo Cacciamani⁽¹⁾

⁽¹⁾ Agenzia ItaliaMeteo

-XX

6)

- ⁽²⁾ Arpae Emilia-Romagna
- ⁽³⁾ University of Bologna

PrePEP Conference 16-21 March 2025 University of Bonn

global storm-resolving (~3km)

Tri-lateral Cooperation Germany, Italy, Switzerland

Global-to-Regional short-range high resolution Digital Twin

> configurable on-demand

based on the prediction capability of the ICON modeling system and the Data Assimilation Coding

Environment DACE

Bologna flood, 19/10/2024

TODAY

Observed precipitation from 19/10 at 12 UTC to 20/10 at 00 UTC

ItaliaMeteo

Bologna flood, 19/10/2024

Bologna flood, 19/10/2024

Experimental set-up

ICON-2I domains

Model set-up for the two-way nesting (ICON-2I-NEST)

- Resolution: 2.2 km and 1.1 km, 65 levels
- Convection: only shallow convection parameterization (no grayzone tuning) for both domains

ICON-1I domain

Experimental set-up

Evaluation of **four configurations** from 16 Oct 00 UTC to 20 October 00 UTC

Configuration	Analysis	Forecast	Description
control	ICON-2I	ICON-2I	Operational-like setup
nested_forecast	ICON-2I	ICON-2I-NEST	Uses <i>control</i> analysis but runs the forecast with 1.1 km nest
fully_nested	ICON-2I-NEST (first guess)	ICON-2I-NEST	Analysis and forecast computed with 1.1 km nest
run 1.1	ICON-2I	ICON-1I	Operational analysis at 2.2 km and forecast at 1.1 km

A 24-h deterministic forecast is initialized every 3h from the KENDA deterministic member (33 forecasts per configuration)

ICON-2I data assimilation system

Model set-up:

- Resolution: 2.2 km, 65 levels
- Convection: only shallow convection parameterization (no grayzone tuning)

Data assimilation implementation (KENDA system):

- 40 members + deterministic run
- 1-h assimilation cycles, employing IAU
- Assimilation of AIREP, TEMP, SYNOP (wind and surface pressure) and weather radar volumes (solid lines) of reflectivity and radial wind through KENDA
- Assimilation of QPE based on Italian radar composite via LHN

ItaliaMeteo

QPF verification: FSS

Observations: hourly radar-estimated precipitation over Italy corrected with rain-gauges. Boxes: 0.2° x 0.2°

nilia-romagn:

QPF verification: performance diagram

Verification setup:

- Evaluates average and maximum precipitation over alerting areas (regions homogeneous in terms of hydrometeorological phenomena and impacts)
- ~ 3000 rain gauges
- Different precipitation thresholds for average and maximum values
- 1-hourly precipitation
- all lead times aggregated

QPF verification: performance diagram

pee nilia-romagna ItaliaMeteo

а

e nilia-romagna Italia Meteo

а

Conclusions and future plans

- Direct run at 1.1 km forecast shows slightly better performances in particular for rainfall maxima
- Precipitation misplacement still persists
- Increasing the resolution of the ICON model with two-way nesting for both forecasts and KENDA cycles degrades the performances

- Tuning parameterization schemes at 1.1 km
- Testing the whole system at 1.1 km, generating analysis at 1.1 km instead of 2.2 km
- Extending evaluation period considering different weather regimes
- Extending verification to other variables

Thank you for your attention