Investigation of aerosol effects on precipitation initiation processes in the alternately clean and aerosol-laden environment of New Zealand Aotearoa

<u>Patric Seifert¹</u>, Heike Kalesse-Los², Martin Radenz¹, Tom Gaudek¹, Albert Ansmann¹, Andreas Macke¹, Adrian McDonald³, Guy Coulson⁴

1: Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

- 2: Leipzig Institute for Meteorology, University of Leipzig, Germany
- 3: University of Canterbury, Christchurch, NZ
- 4: The Air Quality Collective, Auckland, NZ

presented at PrePEP conference, Bonn, Germany, 21 March 2025

TROPOS Leibniz Institute for Tropospheric Research

Motivation 1 – the masked relevance of aerosol in cloud processes:

- Complex entanglement of aerosol, cloud dynamics and the formation of hydrometeors and precipitation
- Role of aerosol by far not clarified
- But also other (thermodynamic) contributions still not well constrained

What is the role of aerosol and turbulence in the evolution of cloud systems?

- aerosol particles
- cloud droplets
 - ice particles
 - large ice particles

rain

©M. Radenz

Gobal maps of (near-surface) cloud condensation nuclei (CCN) and ice nucleating particle (INP) concentrations

Locations with long-term ground-based remote sensing by TROPOS Remote Sensing Department (RSD)

[[]Vergara-Temprado 2017 ACP]

Profiling observations: Study aerosol-cloud-dynamics interaction with synergistic remote-sensing methods

Patric Seifert (seifert@tropos.de), ACI over New Zealand, 21 March 2025, PrePEP Bonn

4

Oceanet-Atmosphere exploratory platform at Neumayer-3 Station, Antarctica (2023-2024) TROPOS

Motivation 2 - Why New Zealand? → The Southern-Ocean cloud bias

- Models don't manage to accurately simulate the solar radiation budget at the surface of the southern hemisphere mid- and high latitudes!
- \rightarrow Wrong amount of sunlight is predicted to reach the surface!
- Reasons:
 - \rightarrow Wrong representation of macrophysical and microphysical cloud properties
 - → Distributions of cloud fraction and thermodynamic phase simulated much worse compared to their northern-hemisphere counterparts

\rightarrow What is the role of lack of aerosol???

[[]Fiddes et al., 2022, ACP]

Motivation 3 – New Zealand is great to study contrasting aerosol environments!

- Alternating periods of clean air and polluted air above New Zealand
- Clouds and aerosol conditions for both scenarios can be observed at one location.
- First feasability study (TROPOS + NIWA Lauder):
 - Hofer et al., 2024, ACP, <u>https://doi.org/10.5194/acp-24-1265-2024</u>
- \circ One back-trajectory \ddot{m} Airmaced 169. (35%) for each observed cloud layer ဟ 45.04 \circ ~35% air from 4 (21%) Australia đ Source × \rightarrow "polluted" 2 (26%) \circ ~40% air from Southern Ocean **é**3 (18%) \rightarrow "clean" Lidar beams at the NIWA Lauder atmospheric **Clean Airmasses** observatory

Motivation 3 – New Zealand is great to study contrasting aerosol environments!

- Alternating periods of clean air and polluted air above New Zealand
- Clouds and aerosol conditions for both scenarios can be observed at one location.
- First feasability study (TROPOS + NIWA Lauder):
 - Hofer et al., 2024, ACP, <u>https://doi.org/10.5194/acp-24-1265-2024</u>
- One back-trajectory for each observed cloud layer
 ~35% air from Australia → "polluted"
 ~40% air from Southern Ocean
 - \rightarrow "clean"

Low aerosol load

Increased reflectivity of clouds for solar radiation

Patric Seifert (seifert@tropos.de), ACI over New Zealand, 21 March 2025, PrePEP Bonn

Reduced efficiency of ice formation

Investigating <u>Aerosol-Cloud-rADiation-interactioN over Aotearoa (ACADIA)</u>

as part of the goSouth-2 umbrella project

Hypothesis:

The alternation of aerosol-limited and aerosol-burden air mass regimes over New Zealand lead to observable contrasts in the (microphysical and radiative) properties of clouds and precipitation.

GOAL 1: long-term ground-based observations

- 1yr obs (Sep 2025 Aug 2026)
- Timing in-sync with goSouth2 campaign series, including HALO-SOUTH campaign (Sep – Oct, 2025)
- Deployment of LACROS instrumentation at INV financed by TROPOS
- Deployment of LIM
 instrumentation (Uni Leipzig)
 at TAWHAKI applied for
- 2 PhDs (3 yrs) applied for

- Plus auxilliary in-situ instrumentation at Invercargill for:
 - Aerosol size distribution from 5 nm to 32µm;
 - Cloud Condensation Nuclei Counter (CCNC) and Ice Nucleating Particle (INP) analysis

Science GOAL 2:

(Schimmel et al., 2022)

- 1. Fill data gap of long-term aerosol, cloud and precipitation observations over ANZ to create data base of Southern Ocean cloud properties
- **2.** Best estimates of cloud thermodyn. profiles

Science GOAL 3:

Cluster analysis of back-trajectories for altitudes of stratiform mixed-phase cloud tops (Hofer et al., 2024)

- Fill data gap of long-term aerosol, cloud and precipitation observations over ANZ to create data base of Southern Ocean cloud properties
 - . Best estimates of cloud thermodyn. Profiles
 - . Conduct contrast studies for clouds and aerosols for different air mass regimes over Invercargill and Tawhaki

Science GOAL 4:

- 1. Fill data gap of long-term aerosol, cloud and precipitation observations over ANZ to create data base of Southern Ocean cloud properties
- 2. Best estimates of cloud thermodyn. Profiles
 - Conduct contrast studies for clouds and aerosols for different air mass regimes over Invercargill and Tawhaki
 - Perform radiative closure studies

Science GOAL 5:

Air mass transformation along 450 km path over South Island of ANZ?

- Fill data gap of long-term aerosol, cloud and precipitation observations over ANZ to create data base of Southern Ocean cloud properties
- 2. Best estimates of cloud thermodyn. Profiles
- 3. Conduct contrast studies for clouds and aerosols for different air mass regimes over Invercargill and Tawhaki
- 4. Perform radiative closure studies
- 5. Identify regimes when INV and TAW were subsequently passed by same air mass to assess transformation of aerosols and clouds over South Island of ANZ

Science GOAL 6:

- Fill data gap of long-term aerosol, cloud and precipitation observations over ANZ to create data base of Southern Ocean cloud properties
- 2. Best estimates of cloud thermodyn. Profiles
- Conduct contrast studies for clouds and aerosols for different air mass regimes over Invercargill and Tawhaki
- 4. Perform radiative closure studies
- 5. Identify regimes when INV and TAW were subsequently passed by same air mass to assess transformation of aerosols and clouds over South Island of ANZ
- 6. Contextualize observations with HALO-South Obs./EarthCARE obs. and model simulations (e.g., CAMS and hopefully more)

Summary

- Problem:
 - Persistent false model representation of cloud properties in the mid- and high latitudes of the southern hemisphere
- Possible reason:
 - Lack of cloud-relevant aerosol (CCN, INP) not accurately represented in the simulation setups
- Approach:
 - goSouth-2 & ACADIA
 - Characterization of aerosol and cloud properties during long-term deployment of ground-based remote sensing instrumentation to New Zealand
 - Aerosol-Cloud-Interaction contrast studies
 - Unprecedented characterization of cloud microphysical structure for improved radiative transfer simulations

TROPOS

Thank You

One approach to identify ACI: Picking target scenarios from long-term observations

- E.g:
 - stratiform
 supercooled liquid
 clouds
 - Defined turbulence

Occurrence of heterogeneously formed ice vs. INP concentrations

TROPOS

18

Auxilliary in-situ instrumentation at Invercargill

- Aerosol size distribution from 5 nm to $32 \mu m$
- Cloud Condensation Nuclei Counter (CCNC)
- Ice Nucleating Particle (INP) analysis

Cloud Condensation Nuclei Counter Low-Volume Filter sampler

