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Rain Gauge Weather radar (C-band)

Rainfall sensors in Germany
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Rain Gauge Weather radar (C-band)Commercial microwave link (CML)

Rainfall sensors in Germany
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Problem formulation

Target:
Rain gauge QPE

1 min res.

Radar Measurement height

Input:
Radar QPE (RADOLAN-RY)

5 min res.

Prediction via deep 
learning approach
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Problem formulation

Input:
Radar QPE (RADOLAN-RY)

5 min res.

Target:
Rain gauge QPE

1 min res.

Radar Measurement heightObjectives:

➔ Short-term prediction of five 1-min time-steps

➔ Reduce biases compared to rain gauges

➔ Spatiotemporal consistency of rainfall maps



ResRadNet
Residual neural network 
using 3D convolutions
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11km x 11km x 5*5min

11km x 11km

5*1min
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11km x 11km x 5*5min

11km x 11km

5*1min

Intuition: 
“Model perturbation of input rather than absolute state”

ResRadNet
Residual neural network 
using 3D convolutions

Polz et al. 2024
TGRS



10

Normalized root mean squared error

Pearson correlation coefficient
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Training data



Raw radar Gauge adjusted radar ResRadNet
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Animation: July 6 2021

5 min 5 min 1 min
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Raw radar Gauge adjusted radar

➔ Less Blue and Red!

ResRadNet

Animation: July 6 2021

5 min 5 min 5 min



Raw radar

Advection correction

Maps of rainfall sum between 16:00 and 19:00 on 6 July 2021
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ResRadNet
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ResRadNet [mm]

5 minute resolution 1 minute resolution

Missing extremes due to uncertainty and double penalty effect
→behaves like an ensemble mean prediction

ResRadNet [mm]
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Disclaimer:

The following results are much less validated

The presented ideas are valid though ;)
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1Gal & Ghahramani, 2016. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. ICML



Observation

Continuous Ranked
Probability Score (CRPS)
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Variability? 😊

Extremes? 😕

→ explore alternative randomisation
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Graf, Polz and Chwala; PiuZ 2021
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➔ 3904 CMLs

➔ instantaneous measurement of 

transmitted and received 

signal level

➔ 1-minute resolution

Commercial microwave links (CML)
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ResRadNet
Residual neural network 
using 3D convolutions
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11km x 11km x 
5*5min

5*1min
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Model not trained on winter data
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➔ Time to scale training data



Conclusion:

● ResNet approach for radar adjustment works

● CRPS loss + dropout 
○ creates reasonable variability
○ does not solve missing extremes

● CMLs provide valuable information, especially at 1-minute resolution



Thank you!



Train
➔ 60% of stations, 2020

Test
➔ 20% of stations, 2021

Validation
➔ 20% of stations, 2013-2021

Daily validation
➔ >1000 independent stations, 2013-2021

Important: spatio-temporally independent validation!

?

!

!!

Data splitting
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Apart from the obvious scaling and calibration than needs to be done,

we require a more flexible approach to digest the CML data

Jaegle, A., Borgeaud, S., Alayrac, J. B., Doersch, C., Ionescu, C., Ding, D., ... & Carreira, J. (2021). 
Perceiver io: A general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795.



Raw radar
Advection corrected

(pySTEPS)

Sampling error

Maps of rainfall sum between 16:00 and 19:00 on 6 July 2021
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Advection corrected
+ gauge adjusted



Raw radar
Advection corrected

(pySTEPS)
Advection corrected

+ gauge adjusted

ResRadNet

Sampling error

Maps of rainfall sum between 16:00 and 19:00 on 6 July 2021
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Raw radar
Advection corrected

(pySTEPS)
Advection corrected

+ gauge adjusted

ResRadNet

Sampling error

Maps of rainfall sum between 16:00 and 19:00 on 6 July 2021
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Raw radar
Advection corrected

(pySTEPS)
Advection corrected

+ gauge adjusted

ResRadNet

Sampling error

Maps of rainfall sum between 16:00 and 19:00 on 6 July 2021
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