

A statistical evaluation of convective cloud microphysics in a numerical weather prediction model with polarimetric radar observations

*Gregor Köcher*¹, *Tobias Zinner*¹, *Florian Ewald*², *Christian Heske*²

1: Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany (LMU) 2: Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany (DLR)

Email: gregor.koecher@physik.uni-muenchen.de

Introduction

Problem: NWP struggles to correctly simulate **spatial distribution** and **intensity** of convective and stratiform parts in convective systems

Xue et al. (2017), AMS

Micro	physics	

- Influences structure and development of convection
- Determines **transport** from convective updraft into stratiform precipitation parts
- Controls sedimentation speed through ice density
- Hard to observe on high level of detail

Convection

- Can vary strongly from case to case
- Requires **statistics** over large data set

Introduction

Approach: Statistical comparison of simulated and observed polarimetric radar signals to evaluate microphysics during spatio-temporal development of thunderstorms

Radar quantities

Radar quantities

5

Model Setup

The model

WRF: Weather Research and Forecasting Model (Skamarock et al., 2019)
Regional numerical weather prediction model (NWP)

Munich Domain with a grid spacing of **400 m**

Model Setup

The model

WRF: Weather Research and Forecasting Model (Skamarock et al., 2019)
Regional numerical weather prediction model (NWP)

The microphysics

- Bulk (Thompson 2-mom, Morrison 2-mom, Thompson 2-mom aerosol aware)
- Spectral Bin (Shpund 2019)
- P3 (Morrison and Milbrand 2015)

Munich Domain with a grid spacing of **400 m**

Model Setup

The model

- WRF: Weather Research and Forecasting Model (Skamarock et al., 2019)
- Regional numerical weather prediction model (NWP)

The microphysics

- Bulk (Thompson 2-mom, Morrison 2-mom, Thompson 2-mom aerosol aware)
- Spectral Bin (Shpund 2019)
- P3 (Morrison and Milbrand 2015)

Comparison to observations

- With polarimetric radar forward operator
- CR-SIM: Cloud Resolving Model Radar Simulator (Oue et al., 2020)

Munich Domain with a grid spacing of **400 m**

Spatial distribution: microphysics

Spatial distribution: microphysics

Spatial distribution: microphysics

What do you see?

- Fraction of pixels above 5 and 35 dBZ with height
- Proxy for precipitation **coverage**
- Radar observations in **black**, simulations in **color**

What do you see?

- Fraction of pixels above 5 and 35 dBZ with height
- Proxy for precipitation **coverage**
- Radar observations in black, simulations in color

Microphysics

- Morrison: Too high stratiform (5 dBZ) coverage
- P3: Close to observations at upper heights
- P3: Unrealistic strong increase of convective coverage below 3 km

Low Morrison precipitation intensity

What do you see?

- Fraction of pixels above 5 and 35 dBZ with height
- Proxy for precipitation **coverage**
- Radar observations in **black**, simulations in **color**

Microphysics

- Morrison: Too high stratiform (5 dBZ) coverage
- P3: Close to observations at upper heights
- P3: Unrealistic strong increase of convective coverage below 3 km

What do you see?

- Fraction of pixels above 5 and 35 dBZ with height
- Proxy for precipitation **coverage**
- Radar observations in **black**, simulations in color

Microphysics

- Morrison: Too high stratiform (5 dBZ) coverage
- P3: Close to observations at upper heights
- P3: Unrealistic strong increase of convective coverage below 3 km

What is happening for P3?

• Too high ZDR in P3

Reflectivity (dBZ)

• Too high Z in P3

Differential Reflectivity (dB)

Summary

Polarimetric radar observations

• Sensitive to particle properties (shape, size, density, ...)

• Useful tool for evaluation of model **microphysics**

Statistical evaluation

- On objective based convective cell basis
- Using an automated cell-tracking algorithm (Tobac)

Spatial distribution of precipitation

- Too much convective coverage in P3 below 3 km
- Morrison: Too much stratiform coverage at all heights

Particle size distributions

- In convective core: P3 produces too large rain drops
- In stratiform region: Morrison and FSBM too small rain drops

Köcher, G., Zinner, T., Knote, C., Tetoni, E., Ewald, F., and Hagen, M. (2022): Evaluation of convective cloud microphysics in numerical weather prediction models with dual-wavelength polarimetric radar observations: methods and examples, Atmos. Meas. Tech., 15, 1033–1054, https://doi.org/10.5194/amt-15-1033-2022

Köcher, G., Zinner, T., and Knote, C. (2023): Influence of cloud microphysics schemes on weather model predictions of heavy precipitation, Atmos. Chem. Phys., 23, 6255–6269, https://doi.org/10.5194/acp-23-6255-2023

Köcher, Gregor (2023): Convective cloud microphysical parameterizations in a numerical weather prediction model: an evaluation with polarimetric radar observations. Dissertation, LMU München: Faculty of Physics, https://doi.org/10.5282/edoc.32170

Email: gregor.koecher@physik.uni-muenchen.de

Spatial distribution: Horizontal

What do you see?

- Boxplots of CAF at 1.5 and 5.5 km height
- Observations in **brown**, simulations in **color**

Spatial distribution: Horizontal

What do you see?

- Boxplots of CAF at 1.5 and 5.5 km height
- Observations in **brown**, simulations in **color**

Microphysics

- Two groups: Smaller and larger median CAFs
- Smaller CAFs: Morrison 2-mom, FSBM, radar observations
- Larger CAFs: Thompson 2-mom, Thompson aerosol, P3

Spatial distribution: Horizontal

LMU

Statistical comparison of radar signals

Statistical comparison of radar signals

In FSBM (and Morrison)

Towards spatio-temporal development

