

Melting Layer and Riming Detection from Vertically Pointing C-band Radar Observations

Paul Ockenfuß¹, Mathias Gergely², Stefan Kneifel¹, Michael Frech²

1 Ludwig-Maximilians-Universität in Munich; 2 German Weather Service (DWD)

Part of the German Research Foundation (DFG) priority program PROM, subproject POMODORI

PrePEP Conference: Precipitation Processes – Estimation and Prediction 20th March 2025

Contact: Paul Ockenfuß (paul.ockenfuss@physik.uni-muenchen.de)

Ka Band Cloud Radar

Mosimann, L. An improved method for determining the degree of snow crystal riming by vertical Doppler radar, Atmospheric Research, Elsevier BV, 1995, 37, 305-323 Kneifel, S. & Moisseev, D.: Long-Term Statistics of Riming in Nonconvective Clouds Derived from Ground-Based Doppler Cloud Radar Observations, Journal of the Atmospheric Sciences, American Meteorological Society, 2020, 77, 3495-3508 Ockenfuß, P.; Gergely, M.; Frech, M. & Kneifel, S.: Spatial and Temporal Scales of Riming Events in Nonconvective Clouds Derived From Long-Term Cloud Radar Observations in Germany , Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), 2025, 130

Ka Band Cloud Radar

Mosimann, L. An improved method for determining the degree of snow crystal riming by vertical Doppler radar, Atmospheric Research, Elsevier BV, 1995, 37, 305-323 Kneifel, S. & Moisseev, D.: Long-Term Statistics of Riming in Nonconvective Clouds Derived from Ground-Based Doppler Cloud Radar Observations, Journal of the Atmospheric Sciences, American Meteorological Society, 2020, 77, 3495-3508 Ockenful2, P.; Gergely, M.; Frech, M.; Kreich, S.: Spatial and Temporal Scales of Riming Events in Nonconvective Clouds Derived From Long-Term Cloud Radar Observations in Germany, Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), 2025, 130

Ka Band Cloud Radar

Mosimann, L. An improved method for determining the degree of snow crystal riming by vertical Doppler radar, Atmospheric Research, Elsevier BV, 1995, 37, 305-323 Kneifel, S. & Moisseev, D.: Long-Term Statistics of Riming in Nonconvective Clouds Derived from Ground-Based Doppler Cloud Radar Observations, Journal of the Atmospheric Sciences, American Meteorological Society, 2020, 77, 3495-3508 Ockenful2, P.; Gergely, M.; Frech, M.; Kreich, S.: Spatial and Temporal Scales of Riming Events in Nonconvective Clouds Derived From Long-Term Cloud Radar Observations in Germany, Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), 2025, 130

Mosimann, 1995: Qualitative Classification

Ka Band Cloud Radar

2/13

Mosimann, L. An improved method for determining the degree of snow crystal riming by vertical Doppler radar, Atmospheric Research, Elsevier BV, 1995, 37, 305-323 Kneifel, S. & Moisseev, D.: Long-Term Statistics of Riming in Nonconvective Clouds Derived from Ground-Based Doppler Cloud Radar Observations, Journal of the Atmospheric Sciences, American Meteorological Society, 2020, 77, 3495-3508 Ockenfuß, P.; Gergely, M.; Frech, M. & Kneifel, S.: Spatial and Temporal Scales of Riming Events in Nonconvective Clouds Derived From Long-Term Cloud Radar Observations in Germany, Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), 2025, 130

- Mosimann, 1995: Qualitative Classification
- Kneifel & Moisseev, JAS, 2020: Quantitative Rime Mass

Ka Band Cloud Radar

Mosimann, L. An improved method for determining the degree of snow crystal riming by vertical Doppler radar, Atmospheric Research, Elsevier BV, 1995, 37, 305-323 Kneifel, S. & Moisseev, D.: Long-Term Statistics of Riming in Nonconvective Clouds Derived from Ground-Based Doppler Cloud Radar Observations, Journal of the Atmospheric Sciences, American Meteorological Society, 2020, 77, 3495-3508 Ockenfuß, P.; Gergely, M.; Frech, M. & Kneifel, S.: Spatial and Temporal Scales of Riming Events in Nonconvective Clouds Derived From Long-Term Cloud Radar Observations in Germany, Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), 2025, 130

- Mosimann, 1995: Qualitative Classification
- Kneifel & Moisseev, JAS, 2020: Quantitative Rime Mass
- Ockenfuß, JGR, 2025: Statistical characterization of Events

• 90° Elevation

- 90° Elevation
- Moments and spectra stored since June 2021

Operational C-Band Birdbath Scan

- 90° Elevation
- Moments and spectra stored since June 2021
- Introduced for ZDR calibration

Operational C-Band Birdbath Scan

- 90° Elevation
- Moments and spectra stored since June 2021
- Introduced for ZDR calibration
- Vertical resolution: 25 m sampling, 60 m intrinsic, up to 13.2 km height

Operational C-Band Birdbath Scan

- 90° Elevation
- Moments and spectra stored since June 2021
- Introduced for ZDR calibration
- Vertical resolution: 25 m sampling, 60 m intrinsic, up to 13.2 km height
- Time: One profile every 5 min

Challenges when transferring an existing product **from Cloud Radars to the Operational Birdbath Scan**

Challenges when transferring an existing product **from Cloud Radars to the Operational Birdbath Scan**

• Different Band (sensitivity, attenuation, ...)

Challenges when transferring an existing product **from Cloud Radars to the Operational Birdbath Scan**

- Different Band (sensitivity, attenuation, ...)
- Coarse Time Resolution

Challenges when transferring an existing product **from Cloud Radars to the Operational Birdbath Scan**

- Different Band (sensitivity, attenuation, ...)
- Coarse Time Resolution
- No Additional Data (e.g. Lidar, Radiometer, Model Profiles)

Challenges when transferring an existing product **from Cloud Radars to the Operational Birdbath Scan**

5 min

5 min

- Different Band (sensitivity, attenuation, ...)
- Coarse Time Resolution
- No Additional Data (e.g. Lidar, Radiometer, Model Profiles)

Impact of those points can be quantified by **comparing** the results of:

- the original retrieval and data "as is"

- the new retrieval applied to **coarsened cloud radar data** (and no additional information)

Example: Melting Layer Detection

Original: Rain vs ice discriminated using Cloudnet Target Categorization + High resolution model profiles

Now: Detect melting layer from Doppler

Example: Melting Layer Detection

Original: Rain vs ice discriminated using Cloudnet Target Categorization + High resolution model profiles

Now: Detect melting layer from Doppler - velocity

Example: Melting Layer Detection

Original: Rain vs ice discriminated using Cloudnet Target Categorization + High resolution model profiles

Now: Detect melting layer from Doppler - velocity

Spatial Riming Distribution

Number of riming detections per winter (Nov-Apr); Avg. 2021-2024

Spatial Riming Distribution

Number of riming detections per winter (Nov-Apr); Avg. 2021-2024

Precipitation Distribution

Precipitation Distribution

Precipitation Distribution

Nov. – Apr. avg. precipitation (2005-2025), based on hourly values from closest surface weather station

9 / 13

Precipitation Hours and Rate

Precipitation Hours and Rate

Riming and Precipitation Hours

Precipitation hours [h/winter]

11 / 13

Riming and Precipitation Hours

Pearson Correlation: 0.1

Conclusion

What we did

Transferring our existing riming detection to the operational C-Band birdbath scan **We found**

Sites with more riming events exhibit stronger precipitation!

(Theory: Orographic lifting enhances liquid water which favors riming and creates precipitation)

This illustrates the advantages when doing science based on operational Radars

- Homogenous spatial distribution of radar sites over Germany
- Huge amounts of data $\ \ \rightarrow$ Able to reveal trends even in noisy data

Current Limitations and Future Work

- Compared only climatologies here
- Correlation does not prove causality

My wish

More instruments at radar sites! (E.g. surface weather station)

Additional Slides

1

Temperature where Riming Starts

2

Correlation Hours vs Rate

Radar Topography

4