

DWD

Which ice microphysical processes might explain the typical radar signatures in the Dendritic Growth Layer?

Leonie von Terzi, Stefan Kneifel (LMU Munich)

Christoph Siewert, Axel Seifert, Fabian Jakub (DWD)

Davide Ori (Uni of Cologne)

Leonie von Terzi, l.terzi@lmu.de

The Dendritic Growth Layer (DGL)

* What is the DGL? Why is it important?

The Dendritic Growth Layer (DGL)

* What is the DGL? Why is it important?

The Dendritic Growth Layer (DGL)

* What is the DGL? Why is it important?

★What does the radar see?

Leonie von Terzi, l.terzi@lmu.de

 \rightarrow aggregation

 \rightarrow aggregation

*How are the new ice particles generated?

*Shouldn't aggregation reduce concentration? How can KDP increase then?

Multiscale Structure and Evolution of an Oklahoma Winter Precipitation Event Observations of supercooled water			Deriving Mixed-Phase Cloud Properties from Doppler Radar Spectra S-Band Dual-Polarization Radar Observations of Winter Storms					
. Jeffrey Trapp, David M. Schultz, Alexander V. Ryzhkov, and Ronald L. Holle pointi		ary ice generation by a vertically g X-band Doppler radar	Matthew [thew D. Shupe, Pavlos Kollias, Sergey Y. Matrosov, and Timothy L. Schneider		osov, and Timothy L. Schneider	Patrick C. Kennedy and Steven A. Rutledge	
Print Publication: 01 Mar 2001		<u>1</u> Zawadzki 久 超, F Fabry, W Szyrmer		Print Publication: 01 Apr 2004			Print Publication: 01 Apr 2011	
DOI: https://doi.org/10.1175/1520-0493(2001)129<0486:MSAEOA>2.0.CO;2				DOI: https://doi.org/10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2			DOI: https://doi.org/10.1175/2010JAMC2558.1	
13B.2 DUAL-POLARIZATION WEATHER RADAR OBSERVATIONS OF SNOW GROWTH PROCESSES High-Resolution Ver			ertical Profiles of X-Band Polarimetric Radar Observables during Snowfall in the Swiss Alps					
Dmitri Moisseev ¹ , Elena Saltikoff ² , Matti Leskinen ¹		Marc Schneebeli, Nicholas Dawes, Michael Lehning, and Alexis Berne						
¹ Dep. of Physics, University of Helsinki, Helsinki, Finl. ² Finnish Meteorological Institute, Helsinki, Finland	and I	Print Publication: 01 Feb 2013 DOI: https://doi.org/10.1175/JAMC-D-12-015.1		Polarimetric Signatures above the Melting Layer in Winter Storms: An Observational and Modeling Study				
Polarimetric Radar Observations in the Ice Region of Pr	-Band and X-Band Radar Frequ	Ir Frequencies Jelena Andrić, Matthew R. Kumjian, Dušan S. Zrnić, Jerry M. Straka, and Valery M. M			a, and Valery M. Melnikov			
R. Bechini, L. Baldini, and V. Chandrasekar 11A.6 Observations of snow growth by a vertically pointing radar				Print Publication: 01 Mar 2013 Connecting Microphysical Processes in Colorado Winter Storms with Vertical				
Print Publication: 01 May 2013 Wednesday, 18	September 2013: 11:45 AM	Profiles of Radar Observations						
DOI: https://doi.org/10.1175/JAMC-D-12-055.1 Colorado Ballroom (Peak 4, 3rd Floor) (Beaver Run Resort and Conference Center)							ROBERT S. SCHROM AND MATTHEW R. KUMJIAN	
Isztar Zawadzki, McGill University, Montreal, QC, Canada							partment of Meteorology, The Pennsylvania State University, University Park, Pennsylvania	
A Dual-Polarization Radar Hydrometeor Classification Algorithm for Winter Precipitation Polarimetric Radar Signatures of Dendritic Growth Zones within Colorado Winter Storms (Manuscript received 19 November 2015, in final form 3 May 2016)								
Elizabeth J. Thompson, Steven A. Rutledge, Brenda Dolan, V. Chandrasekar, and Boon Leng Cheong Robert S. Schrom, Matthew R. K				Kumjian, and Yinghui Lu A Polarimetric Analysis of Ice Microphysical Processes in Snow, Using Quasi-Vertical Profiles				
Print Publication: 01 Jul 2014 Print Publication: 01 Dec 2015				Frica M. Griffin, Terry I. Schuur, and Alexander V. Ryzhkov				
DOI: https://doi.org/10.1175/JTECH-D-13-00119.1 DOI: https://doi.org/10.11				MC-D-15-0004.1				
				Print Publication: 01 Jan 2018				
JGR Atmospheres JGR Atmosphere		oheres		DOI: https://doi.org/10.1175/JAMC-D-17-0033.1				
Research Article 👌 Free Access	Research Article 🛛 🔂 Free Access		F	Polarimetric Radar Variables in the Layers of Melting and Dendritic Growth at X Band–Implications for a Nowcasting Strategy				
Dual-polarization radar signatures in snowstorms: Role of	Toward Exploring the	e Synergy Between Cloud Rada	r ^I	In Strathorn Rain				
snowflake aggregation	Polarimetry and Dop	opler Spectral Analysis in Deep	Cold S	Id Silke Trömel, Alexander V. Ryzhkov, Brandon Hickman, Kai Mühlbauer, and Clemens Simmer Print Publication: 01 Nov 2019				
Dmitri N. Moisseev 🔀 Susanna Lautaportti, Jani Tyynela, S. Lim	Precipitating system	Is in the Arctic	Р					
First published: 11 December 2015 https://doi.org/10.1002/2015JD023884 Citations: 78	Citations: 78 Mariko Oue 🕿 Pavlos Kollias, Alexander Ryzhkov, Edward P. Luke		D	OI: https://doi.org/10.1175/JAMC-D-19-0056.1				
	First published: 06 February 2018	https://doi.org/10.1002/2017JD027717 Citation	rs: 28		1.00	Status: this preprint is open for discu	ssion and under review for Atmospheric Chemistry and Physics (ACP).	
Ice microphysical processes in the dendritic g	rowth November 2022	DUNNAVAN	ET AL.		1685			
layer: a statistical analysis combining multi-frequency Radar Retrieval Evaluation and Investigation of De				tic Growth Layer Polarimetric Investigating KDP signatures inside and below the dendritic				
and polarimetric Doppler cloud radar observations Signatures in a Wint				r Storm		growth layer with W-hand Doppler Radar and in situ spowfall		
Leonie von Terzi ¹ , José Dias Neto ² , Davide Ori ¹ , Alexander Myagkov ³ , and Stefan Kneifel ^{1,4} ¹ Institute of Geophysics and Meteorology University of Cologne, Cologne, Germany ¹ Institute of Geophysics and Meteorology University of Cologne, Cologne, Germany			^{,b} Petar Bukovčić, ^{a,b} Alexander V. Ryzhkov, ^{a,b} Rgey Y. Matrosov, ^{e,f} and David J. Delene ^g		ov, ^{a,b}	camera		
² Department of Geosciences and Remote Sensing, Deff University of Technology, Defft, the ³ Radiometer Physics GmbH, Meckenheim, Germany ⁴ Meteorological Institute, Ludwig-Maximilians University Munich, Germany	e Netherlands ^a Coop	^a Cooperative Institute for Severe and High-Impact Weather F ^b NOAA/OAR National Severe Storms Labs ^c School of Meteorology, University of Okla ^d Department of Atmospheric Sciences, University		search and Operations, Norman, Oklahoma atory, Norman, Oklahoma oma, Norman, Oklahoma Washington, Seattle, Washington		Anton Kötsche 🖂 Alexander Myagkov, Leonie von Terzi, Maximilian Maahn, Veronika Ettrichrätz, Teresa Vogi, Alexander Ryzhkov, Petar Bukovcic, Davide Ori, and Heike Kalesse-Los		
Correspondence: Leonie von Terzi (lterzi@uni-koeln.de)	e Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado [†] Physical Sciences Laboratory, NOAA, Boulder, Colorado							
Received: 7 April 2022 – Discussion started: 11 April 2022 Revised: 24 August 2022 – Accepted: 25 August 2022 – Published: 13 September 2022			North Dakota, C	Grand Forks, North Dakota				
		(Manuscript received 19 October 202	21, in final form	n 29 June 2022)				

Hypotheses:

- 1. Small ice crystals sedimenting from above which grow plate-like rapidly in DGL
- 2. Primary nucleation in DGL produces plate-like particles which grow rapidly in DGL
- 3. Secondary ice production (collisional fragmentation) in DGL produces fragments of ice particles

Hypotheses:

- 1. Small ice crystals sedimenting from above which grow plate-like rapidly in DGL
- 2. Primary nucleation in DGL produces plate-like particles which grow rapidly in DGL
- 3. Secondary ice production (collisional fragmentation) in DGL produces fragments of ice particles

<u>Hypotheses</u>:

- 1. Small ice crystals sedimenting from above which grow plate-like rapidly in DGL
- 2. Primary nucleation in DGL produces plate-like particles which grow rapidly in DGL
- 3. Secondary ice production (collisional fragmentation) in DGL produces fragments of ice particles

Radar only sees **effect** of ice microphysical processes (IMP) on the observed particle distribution, **not the IMP themselves!**

The 1D Lagrangian Monte-Carlo particle model McSnow 💥

→Let's combine observations with a model in which current knowledge of IMP can be implemented (Brdar and Seifert, JAMES, 2017)

The 1D Lagrangian Monte-Carlo particle model McSnow 💥

→Let's combine observations with a model in which current knowledge of IMP can be implemented (Brdar and Seifert, JAMES, 2017)

<u>₩1D:</u>

★ "shaft" model, no turbulence, no convection,…

The 1D Lagrangian Monte-Carlo particle model McSnow

→Let's combine observations with a model in which current knowledge of IMP can be implemented (Brdar and Seifert, JAMES, 2017)

<u>₩1D:</u>

★ "shaft" model, no turbulence, no convection,…

★Lagrangian Particle Model:

* predict motion and evolution of individual particles

The 1D Lagrangian Monte-Carlo particle model McSnow 💥

→Let's combine observations with a model in which current knowledge of IMP can be implemented (Brdar and Seifert, JAMES, 2017)

<u>₩1D:</u>

★ "shaft" model, no turbulence, no convection,…

★Lagrangian Particle Model:

✤predict motion and evolution of individual particles

Monte-Carlo approach:

*group particles with similar microphysical properties into super-particles

The 1D Lagrangian Monte-Carlo particle model McSnow 💥

→Let's combine observations with a model in which current knowledge of IMP can be implemented (Brdar and Seifert, JAMES, 2017)

<u>₩1D:</u>

★ "shaft" model, no turbulence, no convection,…

★Lagrangian Particle Model:

* predict motion and evolution of individual particles

Monte-Carlo approach:

*group particles with similar microphysical properties into super-particles

McSnow predicts evolution of super-particles due to

*Deposition -> habit prediction (Welss et al., JAMES, 2024)

*Aggregation

₩Riming

*Secondary ice production

★i.e. fragmentation

***** "Problem": McSnow has freely evolving particle properties:

*, Problem": McSnow has freely evolving particle properties:

***** "Problem": McSnow has freely evolving particle properties:

* We want to <u>consistently</u> forward simulate into Radar Space!

★ "Problem": McSnow has freely evolving particle properties:

* We want to <u>consistently</u> forward simulate into Radar Space!

*Solution: DDA LUTs of a large variety of ice particles (approx. 3100 particles)

- *Dendritic ice crystals
- *Columnar ice crystals
- *Aggregates with varying monomer habits and riming degree

Hypotheses

- 1. Small ice crystals sedimenting from above grow plate-like
- 2. Secondary ice production (Fragmentation) in DGL produces fragments of ice particles

McSnow simulation setup

1. <u>Small ice crystals sedimenting from above</u>

* Assumption:

- * Average $RH_i = 5\%$ (from Radiosonde data)
- ★ Ice nucleation at -20° C < $T < -50^{\circ}$ C, concentration increasing from $1L^{-1}$ at -20° C to $20L^{-1} - 50^{\circ}$ C

* Ice nucleation: initialisation of ice particles with $D = 10\mu m$, aspect ratio = 1, ice density

* After nucleation: particles can evolve freely due to depositional growth, aggregation,...

3. Only ice nucleation at $T < -20^{\circ}C$

3. Only ice nucleation at $T < -20^{\circ}C$

Without ice nucleation (primary or secondary) we do not have a second spectral mode, and also no polarimetric signatures in DGL!

3. Only ice nucleation at $T < -20^{\circ}C$

If particles sediment into DGL, they are already to big to grow into extreme shapes such as plates. Therefore the polarimetric signatures are not observed.

Without ice nucleation (primary or secondary) we do not have a second spectral mode, and also no polarimetric signatures in DGL!

Hypotheses

1. Small ice crystals sedimenting from above grow plate-like

2. Secondary ice production (collisional fragmentation) in DGL produces fragments of ice particles

Hypotheses

1. Small ice crystals sedimenting from above grow plate-like

- 2. Secondary ice production (collisional fragmentation) in DGL produces fragments of ice particles
- * Same setup as in first hypothesis
- New fragmentation scheme based on Grzegorczyk et al. 2023 (see talk by Miklós Szakall, Thu 16:15, Session 2 A) and Takahashi 1995

Obs

Sim

12

Which ice microphysical properties might explain the typical radar signatures in the dendritic growth layer?

- Ice particles sedimenting into the DGL do not grow plate-like
- ★We need a production mechanism close to -15°C for enhanced ZDR and KDP in the DGL!
- * Fragmentation is a promising candidate

Which ice microphysical properties might explain the typical radar signatures in the dendritic growth layer?

- Ice particles sedimenting into the DGL do not grow plate-like
- ★We need a production mechanism close to -15°C for enhanced ZDR and KDP in the DGL!
- * Fragmentation is a promising candidate

Combining "research" models, laboratory studies and radar observations can help to close current knowledge gaps!

