

SPP 2115 PrePEP Conference 2025

A detailed 10 year climatology of quasi-vertical profiles (QVPs) in stratiform rain Tobias Scharbach^{1,2} and Silke Trömel¹

¹ Institute for Geosciences, Section Meteorology, University of Bonn, 53121, Germany; ² toscha@uni-bonn.de

photo of Bonn X-band radar by Velibor Pejcic

- To our knowledge, it represents one of the most comprehensive climatologies of X-band radar data available.
 - ightarrow enables the investigation and/or improved understanding of various microphysical processes (MPPs)

• To our knowledge, it represents one of the most comprehensive climatologies of X-band radar data available.

ightarrow enables the investigation and/or improved understanding of various microphysical processes (MPPs)

• Can serve as a reference statistic for NWP modelers in the mid-latitudes (especially for Germany).

- To our knowledge, it represents one of the most comprehensive climatologies of X-band radar data available.
 - ightarrow enables the investigation and/or improved understanding of various microphysical processes (MPPs)
- Can serve as a reference statistic for NWP modelers in the mid-latitudes (especially for Germany).

Workflow to obtain large climatology of QVPs from BoXPol data

Z_H in Summer (left) and Winter (right) season

Z_H in Summer (left) and Winter (right) season

Z_{DR} in Summer (left) and Winter (right) season

K_{DP} in Summer (left) and Winter (right) season

K_{DP} in Summer (left) and Winter (right) season

ρ_{HV} in Summer (left) and Winter (right) season

ρ_{HV} in Summer (left) and Winter (right) season

- Extreme values of (polarimetric) variables inside the ML, DGL and the layer between the ML and the DGL
 → also referred to needle growth zone (NGZ).
- Annual cycles of (polarimetric) variables: Averaging of the extremes over each month (e.g. all January's) over all years.

- Clear annual cycles of ML-thickness, ML top and bottom
 - \rightarrow stronger aggregation/riming.

- Clear annual cycles of ML-thickness, ML top and bottom
 → stronger aggregation/riming.
- Smaller BB-Amplitude in the warmer months
 - \rightarrow increased particle sizes due to aggregation/riming.

- Clear annual cycles of ML-thickness, ML top and bottom
 → stronger aggregation/riming.
- Smaller BB-Amplitude in the warmer months
 - \rightarrow increased particle sizes due to aggregation/riming.
- Larger distance between ρ_{HV} -min and Z_{H} -max in the warmer months
 - \rightarrow increased number concentrations of particles in the ML.

- V_B-max increases towards warmer months
 - \rightarrow supports more riming and/or aggregation.

- V_B-max increases towards warmer months
 - \rightarrow supports more riming and/or aggregation.
- *K*_{DP}-mean increases towards warmer months
 - \rightarrow larger number concentrations.

- V_B-max increases towards warmer months
 - \rightarrow supports more riming and/or aggregation in summer.
- K_{DP}-mean increases towards warmer months
 - \rightarrow larger number concentrations.
- δ_{max} increases towards warmer months
 - \rightarrow larger melting particles reaching resonance sizes.

Clear annual cycle of K_{DP}-max
 → larger number concentrations in
 the warmer months.

- Clear annual cycle of K_{DP}-max
 → larger number concentrations in
 the warmer months.
- V_B-max increases towards warmer months
 - \rightarrow more aggregation/riming.

- Clear annual cycle of K_{DP}-max
 → larger number concentrations in
 the warmer months.
- V_B-max increases towards warmer months
 - \rightarrow more aggregation/riming.
- Larger differences between the DGL and the NGZ in *K*_{DP}-max for warmer months
 - \rightarrow also indicates more aggregation/riming.

• Z_H and Z_{DR} do not show large differences in the overall profiles of Summer and Winter.

• Generally larger K_{DP} in Summer and local maximum in K_{DP} at -5 °C in Winter (potentially sublimation fragmentation).

- Z_H and Z_{DR} do not show large differences in the overall profiles of Summer and Winter.
- Generally larger K_{DP} in Summer and local maximum in K_{DP} at -5 °C in Winter (potentially sublimation fragmentation).
- Smaller ρ_{HV} in the DGL in Summer
 - \rightarrow more diversity of particles.

- Z_H and Z_{DR} do not show large differences in the overall profiles of Summer and Winter.
- Generally larger K_{DP} in Summer and local maximum in K_{DP} at -5 °C in Winter (potentially sublimation fragmentation).
- Smaller ρ_{HV} in the DGL in Summer
 - \rightarrow more diversity of particles.
- Overall larger total number concentrations in the ML, NGZ and in the DGL in the warmer months

- Z_H and Z_{DR} do not show large differences in the overall profiles of Summer and Winter.
- Generally larger K_{DP} in Summer and local maximum in K_{DP} at -5 °C in Winter (potentially sublimation fragmentation).
- Smaller ρ_{HV} in the DGL in Summer
 - \rightarrow more diversity of particles.
- Overall larger total number concentrations in the ML, NGZ and in the DGL in the warmer months

- Z_H and Z_{DR} do not show large differences in the overall profiles of Summer and Winter.
- Generally larger K_{DP} in Summer and local maximum in K_{DP} at -5 °C in Winter (potentially sublimation fragmentation).
- Smaller ρ_{HV} in the DGL in Summer
 - \rightarrow more diversity of particles.
- Overall larger total number concentrations in the ML, NGZ and in the DGL in the warmer months
 - \rightarrow accompanied stronger aggregation/riming

- Z_H and Z_{DR} do not show large differences in the overall profiles of Summer and Winter.
- Generally larger K_{DP} in Summer and local maximum in K_{DP} at -5 °C in Winter (potentially sublimation fragmentation).
- Smaller ρ_{HV} in the DGL in Summer
 - \rightarrow more diversity of particles.
- Overall larger total number concentrations in the ML, NGZ and in the DGL in the warmer months
 - \rightarrow accompanied stronger aggregation/riming

 \rightarrow attributed to more favorable environmental conditions (e.g. generally higher humidity, colder cloud tops) in the warmer months.

- Z_H and Z_{DR} do not show large differences in the overall profiles of Summer and Winter.
- Generally larger K_{DP} in Summer and local maximum in K_{DP} at -5 °C in Winter (potentially sublimation fragmentation).
- Smaller ρ_{HV} in the DGL in Summer
 - \rightarrow more diversity of particles.
- Overall larger total number concentrations in the ML, NGZ and in the DGL in the warmer months
 - \rightarrow accompanied stronger aggregation/riming

 \rightarrow attributed to more favorable environmental conditions (e.g. generally higher humidity, colder cloud tops) in the warmer months.

PrePEP Conference 2025

A detailed 10 year climatology of quasi-vertical profiles (QVPs) in stratiform rain

¹ Institute for Geosciences, Section Meteorology, University of Bonn, 53121, Germany;

² toscha@uni-bonn.de