

Comparing raindrop size distributions from the two-moment microphysics scheme of the ICON-RUC model with disdrometer observations

PrePEP 2025

Precipitation Processes –

Estimation and Prediction

20th March 2025

<u>Sophie Löbel, Nikolaos Antonoglou,</u> Ulrich Blahak, Alberto de Lozar, Axel Seifert and the Sinfony Team

- → extreme rain rates in the ICON-D2 are often too high
 - ➔ one moment scheme
- → extreme rain rates in the RUC sometimes too low
 - → 2 moment scheme \rightarrow more detailed \rightarrow but still not perfect

- → DWD has a large measuring network with different instruments
 - → more that 150 stations with a disdrometer additional to the conventional precipitation instruments
 - \rightarrow provide information about size and fall speed \rightarrow stored but <u>not used</u> at the moment within DWD
 - → this information can help to improve the microphysical parameterisation (we start with rain)

Disdrometer

- measuring device that determines the size, falling speed and number of drops by means of a laser
- → measurements output in 1-minute intervals; 0.16mm \rightarrow 8mm
- ➔ precipitation type can be determined
- → 28 days selected from 2024 (only rain):
 - → May September \rightarrow summer period
 - days marked as days with permanent precipitation
 - ➔ includes stratiform, convective and mixed precipitation types

Preparation of the observations

- averaged data over 10 minutes to minimize measurement errors
- dominant precipitation type: rain
- 50'000 measurements to evaluate

Gamma-Size-Distribution: $f(D) = N_0 * D^{\mu} * e^{-\lambda * D}$

Plausibility check of the Gamma-size-distribution

- → Rapid Update Cycle (RUC) produces short term forecast with focus on convective (severe) storms
- ➔ produces every hour a new forecast with 14h lead time
- → contains a 2-moment-microphysics scheme → includes information about mass and number of particles
 → follows a gamma size distribution → same assumption as in disdrometer measurements
- → first guess data from assimilation cycle taken as model equivalent (+1h forecast)→ temporal resolution 1h
 - → $6UTC \rightarrow 21 UTC$

Comparison:

- I. measurements assigned in time
 - \rightarrow e.g. obs from 8:30 9:20 UTC \rightarrow 9UTC model data
- II. stations with measurements collected \rightarrow each station only scored once \rightarrow no directly comparison possible \rightarrow distortion of the model statistics
- III. average and maximum specific mass of the rain determined within a radius of 15 km around the station
- IV. calculated from this distribution specific parameters, rain rate and mass weighted diameter \rightarrow 13700 model equivalents

in m⁻³mm⁻¹

By means of the mass and number concentration from the model **particle size** and **gamma-size-distribution** can be specified for each grid point

- observed size distributions
 with different rain rates (solid lines)
 - Ly Station 10534: 7,4mm/h
 - Ly Station 10628: 0,43mm/h
 - Station 10635: 17,7mm/h
 - Station 10641: 1,0 mm/h

 Model size distributions show different distributions compared to observations, but similar rain rates

individual comparison of each measurement not useful; maybe for single specific cases

statistical evaluation for different parameters

Specific rain content (maximum of qr)

Specific rain content (mean qr)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Mass weighted mean diameter at max(qr)

Rain rate estimate from drop size distribution at max(qr)

DWD

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Comparison of the intercept parameter N0

Gamma-Size-Distribution: $f(D) = N_0 * D^{\mu} * e^{-\lambda * D}$

most of the data around 10^4 particles per volume air and droplet size in both datasets

- model values between 10^3 and 10^5 particles
- observation between 10^3 and 10^7 particles

in reality more very small rain drops, but model close enough

Connection between µ and mean diameter

RUC (-1.0) 0.35 Seifert, 2008 (6.0) possible adjustment (4.0) 6 0.30 0.25 4 Density 1 2 0.15 0 0.10 0.05 -2 0.00 3.5 -0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 Diameter in mm

Gamma-Size-Distribution: $f(D) = N_0 * D^{\mu} * e^{-\lambda * D}$

Calculation of μ (shape parameter) in the model depends on the mean diameter

$$\mu = \begin{cases} 6 \tanh[c_1(D_m - D_{eq})]^2 + 1, & D_m \le D_{eq} \\ 30 \tanh[c_2(D_m - D_{eq})]^2 + 1, & D_m > D_{eq} \\ & D_{eq} = 1.1mm \end{cases}$$

for larger droplets the distribution should shift to a exponential size distribution

- value for very small particles set to 7 in the default setting
- > at the beginning RUC had produced too-little drizzle \rightarrow changed to 0
- ➢ forecasting of drizzle in the RUC has improved → could be set to a higher value or back to the original

Conclusion and further work

- → mass weighted mean diameter is significantly underestimated → median = maximum of the distribution → distribution has to be shifted to higher particle sizes
- \rightarrow adjust the connection of the μ and particle mean diameter in the model
- \rightarrow find a new fitting for μ λ dependence \rightarrow try it in the model
- → include parameters in the area of the observations statistically
 → not just the maximum value
- → recalculate the forecasts for he case days:
 - direct temporal comparisons possible, temporal aspect can be examined (are we too early/too late/just right)
 - → comparison of rain rate possible

ALC: NO. 1

14