

Exploiting polarimetric radar observations to improve the ICON-D2 2-moment microphyiscs

Julian Steinheuer^{1,2}, V. Pejcic^{1,2}, J. Mendrok^{2,3}, U. Blahak^{2,3}, A. de Lozar³, S. Trömel^{1,2}

¹ Institute for Geosciences, Department of Meteorology, University of Bonn, Germany

- ² PROM, SPP 2115, Operation Hydrometeors, Part II
- ³ Deutscher Wetterdienst, Offenbach, Germany

rePEP - Conference, Bonn 16 - 21 March, 2025

Validate NWP and pol. forward operator (FO) with polarimetric radars

Validate ICON-D2 and FO EMVORADO with C-band radars

Validate ICON-D2 and FO EMVORADO with C-band radars (July '21 flood)

Ahr near Altenahr

ICON-D2

- with 2-moment microphysics (MP; Seifert and Beheng, 2005)
- with 6 hydrometeor (HM) classes (Rn, Sn, Gr, Ha, Ic, Cw)
- versions: 2022 spring (RUC 0.0; Trömel et al., 2023); 2024 summer (RUC 1.0); 2024/25 winter (RUC 2.0)

polarimetric Forward Operator EMVORADO

- providing synthetic polarimetric radar observations
- based on bulk-scattering lookup tables
- melting scheme (MS) for simulating mixed-phased characteristics

PPIs (0.5°) for ESS on 14-07-2021 17 UTC

ICON-D2 '22

PPIs (12°) for ESS on 14-07-2021 17 UTC

 \rightarrow very pronounced melting layer (ML)

QVPs (12°) for ESS on 14-07-2021 00:00-21:00

 \rightarrow no sharp ML detectable

 \rightarrow too high Z_{DR} values below ML

 \rightarrow too strong K_{DP} -signal in ML

- ! polarimetric signatures in the heights above the melting layer are too strong
- ! EMVORADO assumes a melted fraction (f_{melt}) of frozen HM's in the heights above 0°C, where $f_{melt} = 0$ at $-10^{\circ}C$ increases linearly to $f_{melt} = 0.2$ at 0°C

new melting scheme: dynamical wet-growth in $[-10^{\circ}C, 0^{\circ}C]$

- $\rightarrow\,$ only mixed-phased HM's if liquid water is present
- $\rightarrow\,$ Gr, Ha has only a melted fraction if mean diameter large enough (around 10 mm)

QVPs (12°) for ESS on 14-07-2021 00:00-21:00 with new MS in EMVORADO

below the ML: Z_H and Z_{DR} streaks are too strong and to frequent

- ! graupel is too large and too long surviving
- ! raindrops are too often too big

changes microphysics:

2024 summer (RUC 1.0)

- $\rightarrow\,$ graupel: reduce the collision efficiency
 - increase the terminal velocity
 - limit formation to $T>-3\,^\circ C$
- $\rightarrow\,$ snow: $\,$ reduce the terminal velocity
 - reduce the sticking efficiency

below the ML: Z_H and Z_{DR} streaks are too strong and to frequent

- ! graupel is too large and too long surviving
- ! raindrops are too often too big

changes microphysics:

2024 summer (RUC 1.0)

- $\rightarrow\,$ graupel: reduce the collision efficiency
 - increase the terminal velocity
 - limit formation to $T>-3\,^\circ C$
- ightarrow snow: reduce the terminal velocity
 - reduce the sticking efficiency

2024/25 winter (RUC 2.0)

- $\rightarrow\,$ graupel/hail: shedding for HM's
 - $>9\,mm$ (rain release)
- → graupel: limited generation from rain-rimed snow/ice

via bulk-density check

QVPs (12°) for ESS on 14-07-2021 00:00-21:00 with new MP in ICON

CFTDs (12°) for all radars and 13-07-2021 – 14-07-2021

CFTDs(12°, ALL) on 13-07-2021 – 14-07-2021 of ice microphysical retrievals

 \rightarrow 'S'-shape maybe too pronounced

CFTDs(12°, ALL) on 13-07-2021 – 14-07-2021 for rain drops

 $\leftarrow \text{ inconsistent} \rightarrow$

CFTDs(12°, ALL) on 13-07-2021 – 14-07-2021 for rain drops + graupel

Summary: Converging ICON-D2/EMVORADO to radar observations

EMVORADO:

dynamical melting scheme \rightarrow decrease of pol. signal for mixed phase HM's

ICON-D2: microphysical changes → reduction of graupel sizes

Converging is never finished:

differences for retrievals

! convective situations behaves differently

Exploiting polarimetric radar observations to improve the ICON-D2 2-moment microphyiscs

Julian Steinheuer^{1,2}, V. Pejcic^{1,2}, J. Mendrok^{2,3}, U. Blahak^{2,3}, A. de Lozar³, S. Trömel^{1,2}

¹ Institute for Geosciences, Department of Meteorology, University of Bonn, Germany

- ² PROM, SPP 2115, Operation Hydrometeors, Part II
- ³ Deutscher Wetterdienst, Offenbach, Germany

rePEP - Conference, Bonn 16 - 21 March, 2025

References

Bringi, V. N. et al. (Oct. 2009). "Using Dual-Polarized Radar and Dual-Frequency Profiler for DSD Characterization: A Case Study from Darwin, Australia". In: Journal of Atmospheric and Oceanic Technology 26.10, pp. 2107–2122. DOI: 10.1175/2009jtecha1258.1.

- Carlin, Jacob T. et al. (July 2021). "Polarimetric Observations and Simulations of Sublimating Snow: Implications for Nowcasting". In: Journal of Applied Meteorology and Climatology. ISSN: 1558-8432. DOI: 10.1175/jamc-d-21-0038.1.
- Seifert, A. and K. D. Beheng (Oct. 2005). "A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description". In: Meteorology and Atmospheric Physics 92.1–2, pp. 45–66. ISSN: 1436-5065. DOI: 10.1007/s00703-005-0112-4.
- Trömel, Silke et al. (Dec. 2023). "Fusion of radar polarimetry and atmospheric modeling". In: Advances in Weather Radar. Volume 2: Precipitation science, scattering and processing algorithms. Institution of Engineering and Technology, pp. 293–344. ISBN: 9781839536250. DOI: 10.1049/sbra557g_ch7.