

UNIVERSITÄT LEIPZIG

PrePEP 2025

Ground-Based Observations of Secondary Ice Production: A Case Study Showing Droplet Fragmentation during Refreezing Rain

Nils Pfeifer¹, Susan Hartmann², Bernd Mom³, Dmitri Moisseev³, Maximilian Maahn¹

¹Leipzig University, Leipzig Institute of Meteorology (LIM), Germany ²Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland ³Leibniz Institute for Tropospheric Research (TROPOS), Germany

CAMPAIGN – EVALUATING MICROPHYSICAL PATHWAYS OF MIDLATITUDE SNOW FORMATION

Mesaurement Devices:

- Video In Situ Snowfall Sensor (VISSS)
- 94 Ghz vertically pointing cloud radar
- GRAW DFM 17 radiosondes

Purpose: Integrated field work involving in situ measurements, remote sensing, and modeling

- 5 weeks fieldwork in Hyytiälä, Finland, Jan – March 2024
- > 13 snowfall events

Goal: Quantitative comparison of model outputs and observations

CAMPAIGN – DEVICE: VISSS

Follower

VISSS3Pixel resolution $[\mu m px^{-1}]$ 46.0*Obs. volume $(w \times d \times h)$ [mm]47.1 \times 47.1 \times 58.9Frame size used $[px]$ 1024 \times 1280Frame rate $[Hz]$ 220Effective exposure time $[\mu s]$ 60Working distance [mm]1300		
Pixel resolution $[\mu m px^{-1}]$ 46.0*Obs. volume $(w \times d \times h)$ [mm]47.1 \times 47.1 \times 58.9Frame size used [px]1024 \times 1280Frame rate [Hz]220Effective exposure time [µs]60Working distance [mm]1300		VISSS3
Obs. volume $(w \times d \times h)$ [mm] $47.1 \times 47.1 \times 58.9$ Frame size used [px] 1024×1280 Frame rate [Hz] 220 Effective exposure time [µs] 60 Working distance [mm] 1300	Pixel resolution $[\mu m px^{-1}]$	46.0*
Frame size used $[px]$ 1024×1280 Frame rate $[Hz]$ 220 Effective exposure time $[\mu s]$ 60 Working distance $[mm]$ 1300	Obs. volume $(w \times d \times h)$ [mm]	$47.1 \times 47.1 \times 58.9$
Frame rate [Hz]220Effective exposure time [µs]60Working distance [mm]1300	Frame size used [px]	1024×1280
Effective exposure time [µs] 60 Working distance [mm] 1300	Frame rate [Hz]	220
Working distance [mm] 1300	Effective exposure time [µs]	60
	Working distance [mm]	1300

Maahn et al., 2024, Introducing the Video In Situ Snowfall Sensor (VISSS)

- > 2 high resolution images
- Constrained sampling volume
- > Open-source design

Goal: Retrieving process parameters from VISSS data, like secondary ice processes

CASE STUDY – REFREEZING EVENT 16.02.2024

94 GhZ vertically pointing cloud radar:

CASE STUDY – DEFORMATIONS

Modes of droplet shattering:

- a) Spicular bubble burst
- b) Breakup
- c) Incomplete breakup

CLASSIFICATION

(Size dependent) Threshold in Complexity : $\chi = \frac{Perimeter}{2\sqrt{\pi Area}}$

Classification Error < 5% for Hydrometeors > 0.41 mm

LEIPZIG

WHICH FRACTION OF DROPLETS IS BROKEN?

SUMMARY

> Identification of a likely **droplet fragmentation** event with in-situ + radar

Confirmation of breakup modes from the lab

> Constraining the **effectiveness** by comparing concentrations

Characterized geometry of broken droplets with behavior differing from previous lab studies

UNIVERSITÄT LEIPZIG

THANK YOU FOR YOUR ATTENTION!

Nils Pfeifer

Leipzig Institute for Meteorology Working Group - Cloud and Precipitation Observations for Process Studies (DrOPS) nils.pfeifer@uni-Leipzig.de

