Rare Processes with Kaons and Muons

- $K \rightarrow \pi \nu \nu$
- μ → eγ, 3e
- µ-e conversion

Augusto Ceccucci/CERN

The Future of Particle Physics: A Quest for Guiding Principles Karlsruhe, 01.10.2018

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Beyond the Standard Model

- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM gluino-squark box diagrams [Crivellin,D'Ambrosio, Kitahara, Nierste, PRD96 (2017), 015023]
- MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]
- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models [Isidori et al., Eur. Phys. J. C (2017) 77: 618]

Augusto, Ceobucci/DERN

3

Loop Effects from Vector Leptoquarks

arXiv:1007.02068 A. Crivelling, C. Greub, F. Saturnino

NA62 at the CERN SPS

NA62 beam and detector

Detector and Performances: arXiv:1703.08501

NAD

Augusto, Ocobecci/DERN

-10

–20 –10 0 10 20 30 X [mm] 100

NA62 Gigatracker

Karlsruhe, October 1, 2018

Alessandro Mapelli | 2018

Signal Region Definition

The main backgrounds are bound kinematically while the signal is not

Augusto Ceccucci/CERN

First Results: 2016 data

One candidate observed with 0.27 SM and 0.15 background expected

Augusto, Ceccucci/DERN

RICH ring for the candidate

Augusto, Ocobucci/DERN

10

Results

 $BR(K^+ \to \pi^+ \nu \overline{\nu}) < 11 \times 10^{-10} @ 90\% CL$ $BR(K^+ \to \pi^+ \nu \overline{\nu}) < 14 \times 10^{-10} @ 95\% CL$

One event observed in Region 2, paper in preparation
The results are compatible with the Standard Model
For comparison, taking the candidate to be signal:

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = 28^{+44}_{-23} \times 10^{-11} \ @ \ 68\% \ CL$$

$$BR(K^+ \to \pi^+ \nu \overline{\nu})_{SM} = (8.4 \pm 1.0) \times 10^{-11}$$
$$BR(K^+ \to \pi^+ \nu \overline{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \times 10^{-11} \text{ (BNL, "kaon decays at rest")}$$

NA62 Prospects

• 2017 Data

- ~20 times 2016 statistics
- Reduction of upstream backgrounds

• 2018 Data

- Data taking until mid November
- Further reduction of backgrounds
- Expect ~ 20 SM events with data collected before LS2

• **2021 – 2023** ...

- Data Taking to complete PNN program to 10% precision
- Running in dump mode to study the Dark Sector

Heavy Neutral Leptons in NA62 (Dump)

Scenario 1

Scenario 2

Scenario 3

These sensitivities assume to detect all 2-track final states, including open channels, and zero background

Window of Opportunity to search for HNL and Dark Particles in dump mode in the near future

KOTO Principle

Summary of background inside the signal box

S.E.S: 1.3×10⁻⁹ cf. Grossman-Nir bound <1.5e-9

No Candidate events found: BR < 3 x 10⁻⁹ 90%CL For the future increase intensity from 50 to 90 kW "Aiming to go below 10⁻¹⁰ in a timely manner"

$K_L \rightarrow \pi^0 vv$: Comparison of Techniques

KLEVER@SPS SES is unique if the E391a/KOTO technique is established KOPIO (Time of Flight) technique at the needs 100 ps long proton bunches

Charged Lepton Flavour Violation

- It is not 0 in the SM!
- BR(μ → e γ) ~ α (Δm²/m²_w)²~10⁻⁵⁴
- LFV exists in neutrino oscillations (first place where BSM physics is expected to appear if SM is an EFT)

- cLFV is "natural" in BSM extensions
- Any measurable effect would be a sign of new physics
- Evidence would be indirect, need more than one experimental signature to reveal BSM structure

Golden observables: State of the art

- Br(µ → e γ) < 4.2 x 10⁻¹³ 90% CL (MEG, 2016)
- Br(µ → eee)< 1 x 10⁻¹² 90% CL (Sindrum, 1988)
- μN →eN (Mu e conversion)
 Br(μ Au → e Au)< 7 x 10⁻¹³ 90% CL (Sindrum II, 2006)
- Br(τ →μγ)< 4.4 x 10⁻⁸ ^{90%} CL (Babar, 2010)
- Br(τ → 3μ) < 2.1 x 10⁻⁸ 90% CL (Belle, 2010)

cLFV with "effective" Lagrangian

Example from systematic EFT approach (Crivellin, Davidson, Pruna, Signer)

μ

 $\mu \rightarrow e \gamma$

Signature

Signal: back-to-back topology, time coincidence

Backgrounds

Irreducible: radiative decay with very little missing momentum (cf. Pruner, Signer, Ulrich, arXiv:1705.03787)

Reducible: Accidental photon overlapping to a Michel electron → Push timing, vertex, momentum and energy resolution

Augusto Ceccucci/CERN

MEG2: Status

Karlsruhe, October 1, 2018

Augusto Ceccucci/CERN

MEGII: Projection

Mu3e

PSI PiE5 Beam: > $10^8 \mu/s$, 28 MeV/c Target: mylar double hollow cone: R=19 mm L = 100 mm Karlsruhe, October 1, 2018 Augu

Mu3e: Sensitivity

Data Taking from > 2021

μ – e conversion

• μ converts to an electron in the presence of a nucleus $\mu^- N
ightarrow e^- N$

$$E_e = m_{\mu} c^2 - B_{\mu}(Z) - C(A) = 104.973 MeV$$

- for Aluminum: $\begin{cases} B_{\mu}(Z) \text{ is the muon binding energy (0.48 MeV)} \\ C(A) \text{ is the nuclear recoil energy (0.21 MeV)} \end{cases}$
- Signal normalization:

$$R_{\mu e} = \frac{\Gamma \left(\mu^{-} + N \to e^{-} + N\right)}{\Gamma \left(\mu^{-} + N \to all \text{ captures}\right)}$$

Czarnecki et al., Phys. Rev. D 84, 013006 (2011) arXiv: 1106.4756v2

DeeMe @ MLF 3 GeV RCS

- 1 Pion production by accelerated proton hits on target
- 2 π⁻ → μ⁻ + ν_μ
- **3** μ trapped by a nuclear. Muonic atom formation
- Particles emitted from muonic atom
- 5 Extract electron via secondary beam line and measure the momentum

C target: 8 x 10⁻¹⁴ (1 y) SiC target: 2 x 10⁻¹⁴ (1 y) 5 x 10⁻¹⁵ (4 y)

Mu2e

- 8GeV protons from FNAL accelerator complex
- Re-bunching in the Delivery Ring
- Injected onto the tungsten target located in Capture Solenoid magnet
- Single event sensitivity: 3x10-17
- DAQ starts in 2022, 1 yr commissions and 3 yrs running.

COMET Plans

Phase I commissioning to start end of 2019

The new measurements with slow extraction are made. The data is under analysis. The preliminary result meets the requirements of the experiment.

Parameter	Phase 1	Phase 2
Bending	90 degrees (beam) + 0 degrees (detector)	180 degrees (beam) + 180 degrees (detector)
SES	3x10 ⁻¹⁵	3x10 ⁻¹⁷
Beam power	3.2 kW	56 kW
POT	3x10 ¹⁹	3x10 ²¹
Stopped muons on target	1,5x10 ¹⁶ SES ~ 3 x 10 ⁻¹⁵	1,5x10 ¹⁸
Running time	O(100 days)	O(1 year)
Karisrune, October 1, 2018	Augusto Ceccucci/CERN	32

The extinction

Outlook

- Testing forbidden and rare processes complements the particle physics done at colliders
- It exploits existing proton complex
- K → π vv decays, the "holy grail" of K physics, are being studied in detail, much progress expected within ~two years
- An Incisive Lepton Flavour Violation program in μ decays is in place
- Within a decade the current round of experiments will have explored a lot of unchartered territory

Background summary

Process	Expected events in R1+R2
$K^+ \to \pi^+ \nu \bar{\nu} \ (SM)$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$
Total Background	$0.15\pm0.09_{\rm stat}\pm0.01_{\rm syst}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
$K^+ \to \mu^+ \nu(\gamma)$ IB	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$K^+ \to \pi^+ \pi^+ \pi^-$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
Upstream Background	$0.050^{+0.090}_{-0.030} _{stat}$

-

-

$K_L \rightarrow \pi^0 \nu \ \overline{\nu} \ decay$

- Breaks CP symmetry directly Small theoretical uncertainty:2%
- Suppressed in the SM

-> Sensitive to New Physics

MEG: Result 2009-2013

Karlsruhe, October 1, 2018

Suppression of Prompt Backgrounds

- Employ pulsed beams to avoid prompt backgrounds from pion/kaon decays
- Observing window starts ~ 1 μs after proton pulse
- Must eliminate out-of-time protons to 10⁻¹⁰ or better→ extinction measurements

Facility Construction

Detector Building

Karlsruhe, October 1, 2018

Target remote handling

CR Veto

i/CERN

39

Extinction monitor