

Experimental Overview on Neutrino (Oscillations) Physics

Alfons Weber University of Oxford STFC/RAL & CERN-EP/NU

The Future of Particle Physics: A Quest for Guiding Principles KIT, Oct 2018

Neutrino Mixing The PMNS Matrix

- Assume that neutrinos do have mass:
 - mass eigenstates \neq weak interaction eigenstates
 - Analogue to CKM-Matrix in quark sector!

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\delta_2} & 0 \\ 0 & 0 & e^{i\delta_3} \end{pmatrix}$$

with $c_{13} = \cos(\theta_{13}) + c_{13} = \sin(\theta_{13}) + \theta_{13} = \min(\theta_{13}) +$

with $c_{ij} = \cos(\theta_{ij})$, $s_{ij} = \sin(\theta_{ij})$, $\theta_{ij} = \text{mixing angle and } \Delta m_{ij}^2 = \text{mass}^2$ difference

1-Oct-2018

Mass Ordering

Oscillations for Dummies

- Measure prob.
 - Survival
 - Appearance
- Result
 - Mixing angle
 - Mass differences

Matter Effects

- Simplified treatment: two neutrinos only
- In vacuum

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}(2\theta)\sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$$

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}(2\theta_{m})\sin^{2}\left(\frac{\Delta m_{m}^{2}L}{4E}\right)$$

with $\sin(2\theta_{m}) = \frac{\sin(2\theta)}{\sqrt{(\cos 2\theta - A)^{2} - \sin^{2}(2\theta)}}$
$$\Delta m_{m}^{2} = \Delta m^{2}\sqrt{(\cos 2\theta - A)^{2} - \sin^{2}(2\theta)}$$
$$A = \pm \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m^{2}}$$

in matter

- Matter modifies oscillation probability
 - Sign of mass difference matters (opposite for anti-v)
 - Larger effect at higher energies

The Full Monty

- Life isn't that easy
 3 Flavour oscillations
 - Matter effects
- The full formula

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$$

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \end{split}$$

The T2K Experiment

- Neutrino Beam from j-parc
 - Beam power 50 480 kW
- Far Detector
 - SuperKamiokande
 - 40 kton water Cherenkov

Producing Neutrinos

Super-Kamiokande PID

Super-Kamiokande PID

Muon Neutrino Disappearance

 \mathcal{V}

NOvA

NOvA Detector Concept

NOvA Events

A.Weber @ KIT | Neutrinos

NOvA Disappearance

A word of caution

A.Weber @ KIT | Neutrinos

The Happy Family

Mark Ross-Lonergan @mrossl · Jun 5 Although we will have to wait a bit for a combined analysis, we can easily take a look at yesterdays exciting accelerator updates to the atmospheric mixing parameters in one place! #neutrino2018

1-Oct-2018

Electron Neutrino Appearance

1-Oct-2018

A.Weber @ KIT | Neutrinos

The Full Monty

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(\underline{C}_{12}\underline{C}_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\left(1 - 2S_{13}^{2}\right) \end{split}$$

 $sin(\delta)$ changes sign for anti-neutrinos

- δ is CP-violating phase
- Matter ⇔ anti-matter difference

T2K Results

 \mathcal{V}

NOvA Results

Solar & Reactor Neutrinos In backup slides

Global Fits

All is Fine?

All is Fine?

Signatures

Signatures

29

1-Oct-2018

More Neutrinos?

Global Sterile Picture

• Total: 3 Δm^2 , 6 angles, 3 phases. Different set of experimental data partially decouple:

Michele Maltoni <michele.maltoni@csic.es>

NEUTRINO 2018, 8/06/2018

SNAL Short Baseline Programme

- Search for Sterile Neutrinos
- Neutrino interactions cross sections (7M CC events)

MicroBooNE First Results

$CC-\pi^0$ cross-section

MicroBooNE First Results

 $CC-\pi^0$ cross-section

A.Weber @ KIT | Neutrinos

ICARUS

SBND Near Detector for SBL program 3 year event rates Detailed study of neutrino Argon Charged Current interactions Charge Exchange Elastic ν_{μ} Inclusive 5,389,168 Scattering $\rightarrow 0\pi$ 3,814,198 $\rightarrow 0p$ 27,269 $\rightarrow 1p$ 1,261,730 $\rightarrow 2p$ 1.075.803 Absorptio $\rightarrow \geq 3p$ 1,449,394 $\rightarrow 1\pi^+ + X$ Pion Production 942,555 $\rightarrow 1\pi^- + X$ 38.012 $\rightarrow 1\pi^0 + X$ 406,555 $\rightarrow 2\pi + X$ 145.336 ORT-BAS. $\rightarrow \geq 3\pi + X$ 42,510 $\rightarrow K^+K^- + X$ 521 $\rightarrow K^0 \bar{K}^0 + X$ 582 $\rightarrow \Sigma_c^{++} + X$ 294 SBND NEPP $\rightarrow \Sigma_c^+ + X$ 20 98 $\rightarrow \Lambda_c^+ + X$ 672 DETEC ν_e Inclusive \approx **12,000**

SBL Sensitivity

1-Oct-2018

A.Weber @ KIT | Neutrinos

• The tension cannot be eliminated by discarding any *individual* experiment.

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{ m app}$	$\chi^2_{\rm min, disapp}$	$\Delta \chi^2_{\rm disapp}$	χ^2_{PG} /dof	PG
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	3.7×10^{-7}
Removing anomalous data sets							
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	3.8×10^{-5}
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}
Removing constraints							
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	4.7×10^{-6}
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	6.0×10^{-7}
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	7.5×10^{-7}
Removing classes of data							
\overline{v}_{e} -dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	3.6×10^{-2}
$\tilde{\nu}_{\mu}$ -dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	2.3×10^{-4}
$v_{\mu}^{(-)}$ -dis+solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}

Michele Maltoni <michele.maltoni@csic.es>

NEUTRINO 2018, 8/06/2018

The Big Question

- Is θ_{23} maximal and if not, which octant is it in?
- What is the mass hierarchy/ordering?

Is CP violated in neutrino oscillations?
 We need more than 1-2σ-effects!
 Power comes from combining exp.

Using Atmospherics

Using Atmospherics

Reminder

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}(2\theta_{m})\sin^{2}\left(\frac{\Delta m_{m}^{2}L}{4E}\right)$$

with
$$\sin(2\theta_m) = \frac{\sin(2\theta)}{\sqrt{(\cos 2\theta - A)^2 - \sin^2(2\theta)}}$$

$$\Delta m_m^2 = \Delta m^2 \sqrt{(\cos 2\theta - A)^2 - \sin^2(2\theta)}$$
$$A = \pm \frac{2\sqrt{2}G_F N_e E}{\Delta m^2}$$

Detecting Icy Neutrinos

- Neutrinos interact with ice
 - E > 100 GeV
- Čerenkov light
- Reconstruction
 - Particle type

E~1PeV

- Energy
- direction

"Bert"

"Ernie"

PINGU➔ IceCube Gen II

PINGU Sensitivity

44

KM3NeT & ORCA

Digital Optical Module

Optical background (mainly ⁴⁰K): 10kHz/PMT & 500Hz coincidences

31 x 3" PMTs

- Uniform angular coverage
- Directional information
- Digital photon counting
- Wide angle of view
- Background rejection
- All data to shore

\mathcal{V}

JUNO

- Jiangmen Underground Neutrino Observatory
- Proposed in 2008, approved in 2013

- Physics Program
 - Mass Hierarchy
 - Oscillation parameters
 - SN neutrinos
 - geo-neutrinos
 - solar neutrinos
 - atmospheric neutrinos
 - Sterile neutrinosexotics

Future Reactors: JUNO

1-Oct-2018

A.Weber @ KIT | Neutrinos

Future Reactors: JUNO

8 9 E_v [MeV]

 Δm

6

7

5

- determination of the neutrino mass hierarchy with good sensitivity: 3σ after 6γ
- precisely measure the neutrino mixing parameters
 - sin²θ₁₂ current precision 4.1 % with JUNO below 1%
 - Δm_{21}^2 current precision 2.3 % with JUNO below 1%
 - Δm_{ee}^2 current precision 1.6 % with JUNO below 1%

3

 Δm_{21}

0.02

0.00

Future Accelerator Experiments

Summary

- A coherent picture emerges from
 - Reactors
 - Atmospheric neutrinos
 - Intense beams
- There are no sterile neutrinos! (Probably)
 - Large suite of experiments looking at different aspects
 - SBL, rector
- Next generation of experiments is needed
 - What is the mass ordering?
 - Is there CP violation in the lepton sector?
 - Precision parameter measurements

Thank you!

Accelerator Neutrinos

Solar Neutrinos

Never observed until now

Solar Neutrinos

- Have been measured for many decades
 - Deficit ⇔ solar neutrino problem
- First indication of oscillations

A.Weber @ KIT | Neutrinos

Solar Neutrino Summary

A.Weber @ KIT | Neutrinos

Reactor Neutrinos

- Most intense manmade neutrino source
- Neutron rich fission fragments undergo beta decay

$$^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X' + e^{-} + \bar{\nu}_{e}$$

1-Oct-2018

Detection Concept

The data

Oscillation Parameters

