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Left-Right Symmetry
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SU(2)L × SU(2)R × U(1)B−L (1)
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I usual picture - SU(2) triplets
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symmetry breaking:
I SU(2)R × U(1)B−L

〈δ0R〉−−→ U(1)Y

I SU(2)L × U(1)Y
〈δ0L〉,〈φ

0
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Neutrino Masses
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mass matrix of neutral leptons:
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type-I seesaw

type-II seesaw



L-R Models
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I The majority of the low scale L-R symmetric models constructed so far
is at odds with the generation of “naturally” small neutrino masses

I The natural scenarios should employ the Dirac neutrino masses, mD
ν ,

similar in size to the Dirac masses of charged leptons, ml , and quarks, mq,

mD
ν ≈ mq,ml . (2)

I In the vast majority of studies, L-R symmetry is broken by introducing
the Higgs triplets, while the Higgs doublets are absent.

I The existence of higher representations (triplets) and the absence of
low-dimensional representations (doublets) should have a certain reason
and a proper physical explanation.

I original papers employed doublets → e.g. Senjanovic, Mohapatra
Phys. Rev. D 12 (1975); Mohapatra, Sidhu Phys. Rev. D 16 (1977)



The model
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I we employ scalar doublets

χL =

(
χ+
L

χ0
L

)
∼ (2, 1, 1) , χR =

(
χ+
R

χ0
R

)
∼ (1, 2, 1) .

I relations concerning symmetry breaking√
〈χ0

L〉2 + 〈φ01〉2 + 〈φ02〉2 ≈ 246 GeV,

〈χ0
R〉 � 〈χ0

L〉, 〈φ01,2〉 .

I we extend fermion sector with 3 generations of fermion singlet S

S ∼ (1, 1, 0) (3)

I The lepton masses are generated by the following Lagrangian

L ⊃ −L̄R Y Φ†LL − L̄R Ỹ Φ̃†LL − S̄ YLχ̃
†
LLL − S̄c YR χ̃

†
RLR −

1

2
S̄c µ S + h.c.



Neutrino masses through Inverse seesaw
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I When the scalar fields acquire VEV, the mass matrix of neutral leptons
is generated

M =

 0 mT
D m′TD

mD 0 MT
D

m′D MD µ


mD =

1√
2

(
Y 〈φ01〉 + Ỹ 〈φ02〉

)
, m′D =

1√
2
YL〈χ0

L〉 , MD =
1√
2
YR〈χ0

R〉

I light neutrino mass matrix

mν '
〈χ0

L〉
〈χ0

R〉

(
mD + mT

D

)
− mT

D M−1D µ
(
MT

D

)−1
mD .

linear seesaw inverse seesaw

I following quark-lepton similarity we require inverse seesaw dominance
〈χ0

L〉
〈χ0

R〉
<

0.05 eV

2mmax
D

∼ 10−12



Suppressing 〈χ0
L〉
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In order to estimate 〈χ0
L〉 we consider the following terms of the potential

V ⊃ hχ†LΦ̃χR −m2
χχ
†
LχL (4)

〈χ0
L〉 = h

〈φ01〉
〈χ0

R〉
⇔ h . 40 keV

(
〈χ0

R〉
105 GeV

)2
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µ
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YR YL

Y

〈χ0
L〉 '

1

16π2
〈χ0

R〉
〈φ01〉
〈χ0

R〉
µ

〈χ0
R〉

for µ ' O(10− 100) keV
and 〈χ0

R〉 = 105 GeV
→ 〈χ0

L〉 ' 10−14〈χ0
R〉



Inverse Seesaw and Screening
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Inverse seesaw contribution can be rewritten as

mν ≈
〈φ01〉2

〈χ0
R〉2

Y T Y−1R µ
(
Y T
R

)−1
Y

I we assume screening of the Dirac structures (Lindner et al. JHEP 2005)

Y = YR (5)

ξ ≡ 〈φ
0
1〉

〈χ0
R〉

=
mDi

MDi
→ mν ≈ ξ2µ

I neutrino part of the leptonic mixing matrix UPMNS = U†l Uν
arising from the hidden sector S

Ul ≈ VCKM , Uν ∼ UTBM or UBM

consequence of unification hidden sector

I accurately reproducing rector mixing angle θ13 ≈ 8.5◦



Quark-lepton similarity and flavor symmetries
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I We assume the q-l similarity Y ≈ Yu

I The screening and the q-l similarity conditions determine the
phenomenology of this scenario

I Flavor Symmetries: The matrices Y and YR can be diagonal
simultaneously due to the Gbasis = Z2 × Z2 symmetry with
(−,−), (+,−), (−,+) charges for the three generations of fermions

I symmetries can impose µ that is (approximatively) diagonalized
by tribimaximal matrix. Radiative corrections?

Sc SLR LL

ΦχR χL

YR YL

h

Y

∆µjj '
1

(16π2)2
Y ∗Lj YRj Yj h

h = 0.1 MeV→ ∆µ33 ∼ 10 eV� µ ∼ 0.1MeV



Heavy neutral leptons in the model
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I Diagonalize M =

 0 mD 0

mD 0 MD

0 MD µ
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1√
2

[
1− µii
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]
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√
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1

2
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Neglecting µ yields
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1√
2
sξ U

†
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mixing of N±i in νe
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constraints from: Deppisch et al.

“Neutrinos and Collider Physics”

future collider searches:

Antusch et al. (2017)

∣∣UN
e1

∣∣2 ≈ 1

2

(
mD1

M1

)2

≈ m2
u

2M2
1

Limit: M1 ≥ 2 GeV

I q-l similarity and screening :

M2 = M1mc/mu > 600 GeV (8)
M3 = M1mt/mu ≥ 105 GeV (9)

〈χ0
R〉 ≈

√
2M3 ≥ 2× 105 GeV



mixing of N±i in νµ and ντ
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“Neutrinos and Collider Physics”

future collider searches:

Antusch et al. (2017)

in the absence of screening, bounds are M2,M3 & 100 GeV
and therefore the hierarchy of the heavy leptons can be much weaker



Summary
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I left-right symmetric model with doublets and naturally generated neutrino
masses via inverse seesaw by employing large Dirac neutrino mass terms

I rich phenomenology : heavy lepton searches discussed here ;
signatures from 0ν2β experiments, leptogenesis, corrections to Higgs mass...

I very interesting scenario with two S fields (SL and SR) per generation :
keV-DM candidate

Future colliders :

I quark-lepton similarity and screening yields 〈χ0
R〉 > 105 GeV

I for 100 TeV collider, gauge and scalar sector still testable

I for 〈χ0
R〉 = 500 TeV, only fermion sector is testable

I how many models is there (and how natural they are) and how big is the
parameter space for the discovery of heavy neutral fermions?

I should the choice on which colliders to build in future strongly depend on
their sensisitivity to heavy fermion sector?


