FUTURE HIGGS MEASUREMENTS AT COLLIDERS

Felix Yu Johannes Gutenberg University, Mainz

The Future of Particle Physics: A Quest for Guiding Principles Karlsruhe Institüt für Technologie – October 2, 2018

Central Importance of Higgs Physics

- Ultimate challenge/opportunity of Higgs physics: |H|² operator
 - Higgs potential provides the only scale in EW Lagrangian
 - Renormalization of |H|² (D=2) operator in D=4 QFT underpins hierarchy problem
 - Simplest gauge invariant operator gives attractive motivation for Higgs portal physics
- Many outstanding problems in the SM arise from Higgs sector
 - EWSB and perturbative unitarity
 - Chiral fermion masses
 - EW phase transition and CP violation for baryogenesis
 - Neutrino masses
 - Vacuum stability

Central Importance of Higgs Physics

- Ultimate challenge/opportunity of Higgs physics: |H|² operator
 - SUSY is best candidate for stabilizing the weak scale
 - Elegantly embeds SM Higgs into chiral superfield, with corresponding chiral symmetry removes the quadratic divergence
 - Composite Higgs softens the divergence by prescribing a lower cutoff of the theory and reducing the anomalous dimension
 - [More recent proposals, a la relaxion, focus on dynamical interplay between cosmological evolution and scalar field excursion, not specific to Higgs potential]

Phenomenological perspective

- SM is entirely predictive for a huge range of possible Higgs production and decay channels
 - Yukawa-mediated two-body decays
 - bb, cc, ττ, μμ, ee (tt, ss, uu, dd)
 - Vector coupling-induced decays
 - 4l, lvlv, lvqq
 - Loop-induced decays
 - gg, үү, Zү
 - Rare decays
 - J/ψ γ, Υγ, φγ

Phenomenological perspective

- SM is entirely predictive for a huge range of possible Higgs production and decay channels
 - Yukawa-mediated two-body decays
 - bb, cc, ττ, μμ, ee (tt, ss, uu, dd) **Test Yukawa patterns, CPV phases**
 - Vector coupling-induced decays
 - 4l, lvlv, lvqq
 Test EWSB, probe VV unitarization, additional Higgs states, CPV
 - Loop-induced decays
 - gg, үү, Zү
 - Rare decays
 - J/ψ γ, Υγ, φγ

- Test new colored states, new EM charged states Mass generation/mixing of new matter
 - Test Yukawa couplings, loop-induced couplings

Phenomenological perspective

- Moreover, huge variety of "SM zeroes" which can also be tested in Higgs physics
 - Flavor violating decays (τμ, τe, ...)
 - CP-violation (VV*, ττ, ttH)
 - Invisible decays to DM particles
 - Exotic production modes

Example: new physics flavor puzzle and the $|H|^2$ thorn

• Consider N_f = 3 dim-6 Lagrangian

$$\mathcal{L} \supset y_u \bar{Q}_L \tilde{H} u_R + y'_u \frac{H^{\dagger} H}{\Lambda^2} \bar{Q} \tilde{H} u_R + y_\ell \bar{L} H \ell_R + y'_\ell \frac{H^{\dagger} H}{\Lambda^2} \bar{L} H \ell_R + y_d \bar{Q}_L H d_R + y'_d \frac{H^{\dagger} H}{\Lambda^2} \bar{Q} H d_R + \text{ h.c.}$$

- The flavor structures of y_u', y_l', y_d' are not governed by any gauge symmetry
 - Have not expanded the global symmetry structure either

Example: new physics flavor puzzle and the

|H|² thorn

- Consider N_f = 3 dim-6 Lagrangian
- One linear combination of Yukawa matrices gives diagonal masses

$$m_f = \frac{y_f v}{\sqrt{2}} + \frac{y'_f v^3}{2\sqrt{2}\Lambda^2}$$

• Corresponding effective Yukawa interactions are generally not diagonal, CP-conserving, aligned

$$\frac{y_{f, \text{ eff}}}{\sqrt{2}} = \frac{y_f}{\sqrt{2}} + \frac{3y'_f v^2}{2\sqrt{2}\Lambda^2} = \frac{m_f}{v} + \frac{2y'_f v^2}{2\sqrt{2}\Lambda^2}$$

- Fine-tune mass generation \leftrightarrow large BSM effects
- In particular, $m_f / v \approx 10^{-5} 10^{-1.5}$: why are SM decays falling into line? Harnik, Martin, Okui, Primulando, FY [1308.1094]; FY [1609.06592]

Reminder: Current status

Reminder: Current status

- Recall ggF (and diphoton decay) is non-decoupling for new chiral matter
 - cf. Low energy theorem
 - If deviation is observed that is not quantized in units of SM chiral matter, *must* have a new mass scale beyond EW scale

ATLAS, CMS [1606.02266]

- At pp, ep colliders, longitudinal boost is not fixed
 Leads to ambiguity of COM frame for 2-to-N production
- At ee colliders, COM is lab frame
 - For desired process e+e- \rightarrow Zh, can choose events with $(p_{e+} + p_{e-} - p_Z)^2 = (125 \text{ GeV})^2$ to select a *fully inclusive* Higgs event selection [recoil-mass method]
- For given final state, get

$$N_{\text{events}} = \mathcal{L}\sigma \times B \propto \frac{g_p^2 g_d^2}{\Gamma_{\text{tot}}} \sim \frac{g_p^2 g_d^2}{\sum_i \Gamma_{i,\text{vis}} + \Gamma_{\text{unobs}}}$$

• For given final state, get

$$N_{\text{events}} = \mathcal{L}\sigma \times B \propto \frac{g_p^2 g_d^2}{\Gamma_{\text{tot}}} \sim \frac{g_p^2 g_d^2}{\sum_i \Gamma_{i,\text{vis}} + \Gamma_{\text{unobs}}}$$

- At pp, ep colliders, require additional assumption about contribution of Γ_{unobs} to extract Higgs couplings
- At ee collider, simply measure h→ZZ* and take ratio to extract total width
- Model-indepent width extraction is a key aspect of ee collider Higgs physics compared to pp, ep

ATL-PHYS-PUB-2014-016 and ILC [1710.07621]

- On the other hand, rare decays, exotic production are better probed at pp colliders
 - Simply reflects huge statistics (O(500k-1M) Higgs bosons
 @ ee vs. O(150M) HL-LHC)
- Many additional directions motivate deviations in Higgs physics
 - Additional scalars Rui Santos
 - VH discussion Andreas Papaefstathiou
 - Triple Higgs coupling Julien Baglio
 - Higgs portal Rohini Godbole

Recap

- Every discovery machine has been followed by a precision machine
- The Standard Model |H|² is the most difficult operator we have; progress begs the best precision we can obtain with future colliders

Suite of Higgs modes to study

– EW dibosons

See, e.g. Anderson, et. al. [1309.4819]

- Probe in both decays and production, especially VBF and VH (using crossing symmetry)
- Part of general study of differential distributions to test momentumdependent form factors
- ttH See, e.g. Buckley, Goncalves [1507.07926], talk by Sakurai
 - Dileptonic tt final state with $H \rightarrow bb$ jet substructure
- -ZvFarina, Grossman, Robinson [1503.06470]
 - Take advantage of interference between continuum background and signal from gluon initiated events
- gg Dolan, Harris, Jankowiak, Spannowsky [1406.3322]
 - Use associated jets for angular analysis
- $-\gamma\gamma$ Bishara, Grossman, Harnik, Robinson, Shu, Zupan [1312.2955]
 - Require converted photons (detector material) and angular resolution on leptonic opening angles
- bb, cc, etc. Galanti, Giammanco, Grossman, Kats, Stamou, Zupan [1505.02771]
 - Can possible overcome QCD wash-out of quark polarization

Dimension 6 CPV

- Alonso, Jenkins, Manohar, Trott [1312.2014] Also see Grzadowski, Iskrzynski, Misiak, Rosiek [1008.4884] Henning, Lu, Melia, Murayama [1512.03433]
- 1: X^3 5: $\psi^2 H^3$ + h.c. 8: $(\bar{L}L)(\bar{L}L)$ 8: $(\bar{L}R)(\bar{R}L)$ + h.c. 9: $(\bar{L}R)(\bar{R}L)$ + h.c. 9: $(\bar{L}R)(\bar{R}L)$ + h.c. 9: $(\bar{L}R)(\bar{R}L)$ + h.c. 9: $(\bar{L}R)(\bar{L}R)$ + h.c. 9: $(\bar{L}R)(\bar{R}R)$ 9: $(\bar{L}R)(\bar{R}L)$ + h.c. 9: $(\bar{L}R)(\bar{R}R)$ + h.c. 9: $(\bar{L}R)(\bar{R}R)$ + h.c. 9: $(\bar{L}R)(\bar{R}R)$ + h.c.

1350 CP-even, 1149-CP odd operators (B-conserving)

Class	$N_{\rm op}$	CP-even		CP-odd				
		n_g	1	3	n_g	1	3	
1	4	2	2	2	2	2	2	
2	1	1	1	1	0	0	0	
3	2	2	2	2	0	0	0	
4	8	4	4	4	4	4	4	
5	3	$3n_g^2$	3	27	$3n_g^2$	3	27	
6	8	$8n_g^2$	8	72	$8n_g^2$	8	72	
7	8	$\frac{1}{2}n_g(9n_g+7)$	8	51	$\frac{1}{2}n_g(9n_g-7)$	1	30	
$8 : (\overline{L}L)(\overline{L}L)$) 5	$\frac{1}{4}n_g^2(7n_g^2+13)$	5	171	$\frac{7}{4}n_g^2(n_g-1)(n_g+1)$	0	126	
$8 : (\overline{R}R)(\overline{R}R)$	R) 7	$\frac{1}{8}n_g(21n_g^3 + 2n_g^2 + 31n_g + 2)$	$\overline{7}$	255	$\frac{1}{8}n_g(21n_g+2)(n_g-1)(n_g+1)$	0	195	
$8 : (\overline{L}L)(\overline{R}H)$	R) 8	$4n_g^2(n_g^2+1)$	8	360	$4n_g^2(n_g-1)(n_g+1)$	0	288	
$8 : (\overline{L}R)(\overline{R}I)$	L) 1	n_g^4	1	81	n_g^4	1	81	
$8 : (\overline{L}R)(\overline{L}R)$	R) 4	$4n_g^4$	4	324	$4n_g^4$	4	324	
8 : All	25	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 + 89n_g + 2)$	25	1191	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 - 67n_g - 2)$	5	1014	
Total	59	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 213n_g^2 + 30n_g + 72)$) 53	1350	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 57n_g^2 - 30n_g + 48)$	23	1149	

CPV in HVV interactions at future colliders

• Comparison for e⁺e⁻ and pp

TABLE III: List of f_{CP} values in HVV couplings expected to be observed with 3σ significance and the corresponding uncertainties δf_{CP} for several collider scenarios, with the exception of $V^* \to VH$ mode at pp 300 fb⁻¹ where the simulated measurement does not quite reach 3σ . Numerical estimates are given for the effective couplings Hgg, $H\gamma\gamma$, $HZ\gamma$, HZZ/HWW, assuming custodial Z/W symmetry and using HZZ couplings as the reference. The \checkmark mark indicates that a measurement is in principle possible but is not covered in this study.

				HZZ/HWW					H	gg	$HZ\gamma$	$H\gamma\gamma$	
collider	energy	\mathcal{L}	$H \rightarrow$	$\rightarrow VV^*$	$V^* \to VH$		$V^*V^* \to H$		<i>gg</i> -	$\rightarrow H$	$H\to Z\gamma$	$\gamma\gamma \to H$	$H\to\gamma\gamma$
	${\rm GeV}$	fb^{-1}	f_{CP}	δf_{CP}	f_{CP}	δf_{CP}	f_{CP}	δf_{CP}	f_{CP}	δf_{CP}			
pp	14000	300	0.18	0.06	6×10^{-4}	4×10^{-4}	18×10^{-4}	7×10^{-4}	_	0.50			
pp	14000	3000	0.06	0.02	3.7×10^{-4}	$1.2\times\!10^{-4}$	4.1×10^{-4}	1.3×10^{-4}	0.50	0.16	\checkmark		\checkmark
e^+e^-	250	250		\checkmark	21×10^{-4}	7×10^{-4}	v	(
e^+e^-	350	350		\checkmark	3.4×10^{-4}	1.1×10^{-4}		(
e^+e^-	500	500		\checkmark	11×10^{-5}	4×10^{-5}	v	(
e^+e^-	1000	1000		\checkmark	20×10^{-6}	8×10^{-6}	~	(
$\gamma\gamma$	125			\checkmark								\checkmark	

Anderson, et. al. [1309.4819]