

Institut für Theoretische Physik

Future collider projects in the light of the triple Higgs coupling

The Future of Particle Physics: A Quest for Guiding Principles

02.10.2018, Julien Baglio

Higgs physics: where are we in 2018?

- Higgs boson discovered in 2012 very much like Standard Model Higgs boson!
- Nothing else seen at the LHC yet! What are the prospects at future colliders?

Measuring the triple Higgs coupling: A major target

From the scalar potential before EWSB (ϕ as the Higgs field):

$$V(\phi) = -m^2 |\phi|^2 + \lambda |\phi|^4$$

To $V(\phi)$ after EWSB, with $M_H^2 = 2m^2$, $v^2 = m^2/\lambda$:

$$\phi = \left(\frac{0}{\frac{\nu + H(x)}{\sqrt{2}}}\right) \Rightarrow V(H) = \frac{1}{2}M_H^2H^2 + \frac{1}{2}\frac{M_H^2}{\nu}H^3 + \frac{1}{8}\frac{M_H^2}{\nu^2}H^4 + \text{constant}$$

A recap on future collider projects

Future Circular Collider @ CERN HE-LHC: *pp* with $\sqrt{s} = 27$ TeV in LHC tunnel FCC-ee: e^+e^- with $\sqrt{s} = 90 - 350$ GeV FCC-hh: *pp* with $\sqrt{s} = 100$ GeV

Circular Electron Positron Collider / Super Proton Proton Collider, in China CEPC: e^+e^- with $\sqrt{s} = 240 - 250$ GeV SPPC: *pp* with $\sqrt{s} = 70 - 100$ GeV

A recap on future collider projects

 e^+e^- International Linear Collider, in Japan ILC 1: $\sqrt{s} = 250$ GeV, $\mathcal{L} = 2$ ab⁻¹ ILC 2: $\sqrt{s} = 350$ GeV, $\mathcal{L} = 0.2$ ab⁻¹ ILC 3: $\sqrt{s} = 500$ GeV, $\mathcal{L} = 4$ ab⁻¹

[see arXiv:1710.0762, arXiv:1711.00568]

 e^+e^- Compact Linear Collider @ CERN CLIC 1: $\sqrt{s} = 0.38$ TeV, $\mathcal{L} = 1$ ab⁻¹ CLIC 2: $\sqrt{s} = 1.5$ TeV, $\mathcal{L} = 2.5$ ab⁻¹ CLIC 3: $\sqrt{s} = 3$ TeV, $\mathcal{L} = 5$ ab⁻¹

[see CERN-2016-004]

The starting point

- Higgs couplings measurements: see Felix Yu's talk!
- Latest results from ATLAS at the LHC for λ_{hhh} :

What about the future? Can we reach the 5 σ discovery of *HH* production? Can we pin down λ_{hhh} ?

■ Projected sensivities at FCC-hh: [see A. Canepa, HH Workshop@Fermilab, 9/2018]

 $\begin{array}{l} \textit{HH} \rightarrow \textit{b}\bar{\textit{b}}\gamma\gamma: \textit{\delta}\kappa_{\lambda} \sim \textit{4.5\%!} \\ \textit{HH} \rightarrow \textit{4b}: \textit{\delta}\kappa_{\lambda} \sim \textit{30\%} \\ \textit{b}\bar{\textit{b}}\tau\tau: \textit{\delta}\kappa_{\lambda} \sim \textit{8\%} \text{ (no sys included)} \\ \textit{HH} \rightarrow \textit{b}\bar{\textit{b}}\textit{4}\ell: \textit{\delta}\kappa_{\lambda} \sim \textit{24\%} \text{ (3\% sys included)} \\ \textit{(similar studies exist also for SPPC)} \end{array}$

M. Selvaggi, FCC Workshop June 2018

• We should remember to remain optimistic in projections!

Direct search only possible at the 500 TeV ILC and at CLIC; FCC-ee, CEPC, 250/350 ILC only probe via precision measurement in single *H* production

[see C. Düring, DESY-THESIS-2016-027; T. Barklow, K. Fujii, S. Jung, M. Peskin, J. Tian, Phys.Rev. D97 (2018) 053004] $\delta \kappa_{\lambda} \sim 13\%$ at the CLIC, 2.5 ab⁻¹@1.4 TeV + 5 ab⁻¹@3 TeV

[H. Abramowicz et al, Eur.Phys.J C77 (2017) 475]

An EFT analysis of *H* and *HH* productions Combine direct detection (*HH* production) and indirect probe (*H* production) [see Maltoni *et al*, Degrassi *et al*, Grojean *et al*, etc.]

According to results in [Di Vita, Grojean, Panico, Riembau, Vantalon, JHEP 09 (2017) 069; Di Vita, Durieux,

Grojean, Gu, Liu, Panico, Riembau, Vantalon, JHEP 02 (2018) 178] we get the following picture:

 $pp
ightarrow WH, ZH, t\bar{t}H, HH$

LHC + $e^+e^- \rightarrow ZH$, $\nu \bar{\nu} H$, WW

LHC + $e^+e^- \rightarrow ZH$, $\nu\bar{\nu}H$, WW, ZHH, $\nu\bar{\nu}HH$

LHC alone does not remove the second minimum at δκ_λ ≃ 5
 240/250 GeV lepton colliders are not enough to lift this degeneracy! Why not starting directly at 350 GeV?

Using the Higgs window to study neutrino mass models

• Standard Model: $L = \binom{\nu_L}{\ell_L}, \tilde{\phi} = \binom{H^{0*}}{H^-}$

No right-handed neutrino $\nu_R \Rightarrow$ No Dirac mass term

$$\mathcal{L}_{\text{mass}} = -Y_{\nu} \bar{L} \tilde{\phi} \nu_{R} + \text{h.c.}$$

No Higgs triplet $T \Rightarrow$ No Majorana mass term

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2}m\bar{L}TL^{c} + \text{h.c.}$$

• Necessary to go beyond the Standard Model for ν mass Seesaw mechanisms are very appealing! $\rightarrow \nu$ mass at tree-level \rightarrow heavy sterile fermions \Rightarrow neutrino portal for Dark Matter?

Using the Higgs window to study neutrino mass models

How to search for heavy neutrino with $m_{\nu} > O(1 \text{ TeV})$?

Use the Higgs sector to probe neutrino mass models

- TeV-scale neutrinos + Large Yukawa couplings
 ⇒ Possibly large deviations from SM properties in the Higgs sector
- *HH* production: one of the main motivation for high-luminosity LHC and future colliders \Rightarrow need to study the impact of BSM on $\lambda_{HHH} \Rightarrow$ impact of heavy neutrino(s) on λ_{HHH} ?
 - Sensitive to diagonal Yukawa couplings Y_{ν}

The triple Higgs coupling: A new observable for neutrino physics at future colliders

Looking further: Direct probe in WWH production at CLIC

Can 3 TeV CLIC enlarge the coverage of the inverse seesaw model in the intermediate regime?

[J.B., S. Pascoli, C. Weiland, arXiv:1712.07621, to appear in EPJC (2018)]

The potential is there! Needs to be confirmed with a dedicated analysis!

10/13 | J. Baglio

The great dream of a muon collider?

Circular muon colliders of 14 to 30 TeV center-of-mass energies? LEMMA, MAP, ALEGRO projects

(scenario where $M_R =$ 2.4 TeV, $|Y_{\nu}| =$ 1)

[D. Buttazzo, D. Redigolo, F. Sala, A. Tesi, arXiv:1807.04743]

[J.B., C. Weiland, in CLIC Yellow Report (to appear)]

The ideal place to look further beyond! Still a long way to go...

Some personal statements on future collider projects

- 250 GeV ILC will be of no use to probe the triple Higgs coupling in precision measurements
- Starting at 350 GeV removes the flat direction in the analyses on λ_{hhh}
 ⇒ DO IT at the ILC¹! FCC-ee and CLIC 380 GeV are even better
- FCC-hh and high-energy muons colliders: My ultimate dreams, but I'm not sure to live long enough to see them...

¹And we can also start the top-quark program, by the way...

Measuring the triple Higgs coupling: A major goal of collider physics!

- The future of triple Higgs coupling measurement is bright! Lots of progress in the past few years, towards higher precision and better tools for next experimental analyses
- We are too pessimistic when projecting to the future!
 > Let's be more optimistic
- Assessing the energy for a lepton collider: 350 GeV would be a better start for the ILC!
- Higgs physics as a window on neutrino mass models: High-energy colliders can probe deeply the intermediate regime of low-scale seesaw models!