

IceCube is funded by NSF and other agencies. Specific Acknowledgement of ERC StG "*PeV-Radio*": This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 802729).

This work also received funding from Helmholtz

and from the U.S. National Science Foundation-EPSCoR (RII Track-2 FEC, award ID 2019597)

T 30.2

IceCube-Gen2 Surface Array

Frank G. Schröder for the IceCube-Gen2 Collaboration

Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE, USA, and Karlsruhe Institute of Technology (KIT), Institute for Nuclear Physics , Karlsruhe, Germany

ICECUBE GEN2

UD – University of Delaware KIT – The Research University in the Helmholtz Association www.udel.edu www.kit.edu

IceCube Neutrino Observatory today: surface + in-ice detector

- IceTop = surface array of ice-Cherenkov detectors
 - cosmic-ray physics + veto
- Deep optical array for neutrino detection
 - most in-ice signals are cosmic-ray muons

2 DPG Frühjahrstagung 2024 5. März 2024, Karlsruhe

IceCube-Gen2 Surface Array

3 DPG Frühjahrstagung 2024 5. März 2024, Karlsruhe

IceCube-Gen2 Surface Array

IceCube-Gen2 Surface Array

Baseline design of Gen2 Surface Array: one station per optical string (120)

- 4 pairs of scintillators enabling low threshold for veto
- 3 radio antennas increasing accuracy at high energies

DPG Frühjahrstagung 2024 5. März 2024, Karlsruhe

IceCube-Gen2 Surface Array above the Optical Array

DPG Frühjahrstagung 2024 5. März 2024, Karlsruhe

5

IceCube-Gen2 Surface Array

DAQ baseline design

DAQ for Surface Array Stations in each FieldHub

- Sharing fieldhub with optical string for power, WhiteRabbit timing and communication
- Surface DAQ digitizes radio signals upon trigger received from the scintillators of that station
- New DAQ with deep buffer and array trigger under development

Overview on Science Case of IceCube-Gen2 Surface Array

Rich science case that makes use of unique combination of surface + in-ice detector Surface radio antennas critical for accuracy needed for some science goals

Science Goals	Scientific Measurements and Observables
Veto	 Veto for down-going events and check of real-time alters Test potential of radio veto for very inclined showers
Physics using surface <i>and</i> in-ice detector	 Hadronic interactions including prompt muons Mass composition and other cosmic-ray physics using the in-ice detector
Other cosmic-ray physics	1) Anisotropy, mass composition, energy spectrum, etc. with the surface detector
Multi-Messenger: Photons	1) PeV photon search has discovery potential for Galactic sources.
Calibration of in-ice detectors	 Energy scale for air showers, including cross-calibration of in-ice radio antennas Calibration of in-ice detectors by air-shower signals and muons

Energy reach until Ankle: Galactic-to-extragalactic Transition

8

Low Detection Threshold provided by Scintillators

• 0.5 PeV for vertical protons, 9 PeV for inclined showers \rightarrow trigger for antennas

DPG Frühjahrstagung 2024 5. März 2024, Karlsruhe

9

IceCube-Gen2 Surface Array

Veto Performance of Gen2 Surface Array

- Veto adds 8 to 17 of energy
 (PeV) downgoing neutrinos per decade
- Increases sensitivity by +80% for sky region where IceCube is least sensitive

10DPG Frühjahrstagung 20245. März 2024, Karlsruhe

IceCube-Gen2 Surface Array

A unique lab for particle physics in air showers

- scrutinize hadronic interaction models, study prompt PeV muons, ...
- possible with Gen1, but huge aperture increase (> 30×) in Gen2

11DPG Frühjahrstagung 20245. März 2024, Karlsruhe

IceCube-Gen2 Surface Array

Event-by-Event Mass Sensitivity of Gen2 Surface + Optical Arrays

- In-ice muons have highest separation power, if separate energy measurement
- X_{max} gains importance at highest energies and has smaller systematics

12DPG Frühjahrstagung 20245. März 2024, Karlsruhe

IceCube-Gen2 Surface Array

Result: Radio antennas will increase accuracy above 10^{16.5} eV

- Assuming a precise X_{max} reconstruction with 5+ antennas, highest accuracy for mass composition is provided from 10^{16.5} eV to above 10¹⁸ eV → most energetic Galactic Cosmic Rays
- Combination with muon measurements will maximize accuracy for this important energy range

frank.schroeder@kit.edu

5. März 2024, Karlsruhe

Extended Energy Range of Gen2: Sensitivity to Dipole Anisotropy

fgs@udel.edu frank.schroeder@kit.edu

DPG Frühjahrstagung 2024 14 5. März 2024, Karlsruhe

IceCube-Gen2 Surface Array

Conclusion

IceCube-Gen2 Surface Array

- Cover footprint of Gen2 optical array by an array of elevated scintillators and radio antennas
- Threshold of 0.5 PeV constantly provided by scintillation panels \rightarrow veto for neutrino astronomy
- High accuracy for cosmic-ray air showers provided at high energies by radio antennas
- → IceCube-Gen2 will also be a unique cosmic-ray laboratory with its surface and in-ice detectors

15 DPG Frühjahrstagung 2024 5. März 2024, Karlsruhe

Additional Slides

Baseline Design Follows Planned Enhancement of IceTop

17 DPG Frühjahrstagung 2024 5. März 2024, Karlsruhe IceCube-Gen2 Surface Array

18 DPG Frühjahrstagung 2024 5. März 2024, Karlsruhe

IceCube-Gen2 Surface Array

Best Frequency band

Prototype station

IceCube-Gen2, Galactic noise only

19 DPG Frühjahrstagung 2024 5. März 2024, Karlsruhe

IceCube-Gen2 Surface Array

Antenna of Choice: SKALA

High gain of 40dB with smooth sky coverage

Noise figure of LNA above 100 MHz is about 0.5 dB with thermal noise < 40K, which is below the galactic noise.</p>

Used at Pole: SKALA v2 (prototype version for SKA-low)

E. de Lera Acedo, N. Drought, B. Wakley and A. Faulkner, "Evolution of SKALA (SKALA-2), the log-periodic array antenna for the SKA-low instrument," 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), 2015, pp. 839-843, doi: 10.1109/ICEAA.2015.7297231.

20 DPG Frühjahrstagung 2024 5. März 2024, Karlsruhe IceCube-Gen2 Surface Array

IceCube-Gen2 – a neutrino and also a cosmic-ray experiment

- IceCube-Gen2 will be primarily a next-generation observatory for neutrino astrophysics
- It will also be a unique lab for cosmic rays in the PeV to EeV range thanks to the combination of a surface array with the deep optical array in the ice.

Ultra-high-energy	Cosmic Rav	Instrumentation	Roadmap from	Snowmass	UHECR	whitepaper:
						macpapen

Experiment	Feature	Cosmic Ray Science [*]	Timeline	
Pierre Auger Observatory	Hybrid array: fluorescence, surface e/μ + radio, 3000 km ²	Hadronic interactions, search for BSM, UHECR source populations, σ_{p-Air}	AugerPrime upgrade	
Telescope Array (TA)	Hybrid array: fluorescence, surface scintillators, up to 3000 $\rm km^2$	UHECR source populations proton-air cross section (σ_{p-Air})	TAx4 upgrade	
IceCube / IceCube-Gen2	Hybrid array: surface + deep, up to 6 km^2	Hadronic interactions, prompt decays, Galactic to extragalactic transition	Upgrade + surface enhancementIceCube-Gen2 deploymentIceCube-Ge operation	n2
GRAND	Radio array for inclined events, up to 200,000 $\rm km^2$	UHECR sources via huge exposure, search for ZeV particles, σ_{p-Air}	GRANDProtoGRANDGRAND 200k30010kmultiple sites, step by step step step step step step step step	tep
POEMMA	Space fluorescence and Cherenkov detector	UHECR sources via huge exposure, search for ZeV particles, σ_{p-Air}	JEM-EUSO program POEMMA	
GCOS	Hybrid array with $X_{\rm max} + e/\mu$ over 40,000 km ²	UHECR sources via event-by-event rigidity, forward particle physics, search for BSM, $\sigma_{\rm p-Air}$	GCOSGCOSR&D + first sitefurther sites	
* All amoniments contribute	to multi messenger estrephysics also	2025 2030 2035 2	2040	

*All experiments contribute to multi-messenger astrophysics also by searches for UHE neutrinos and photons; several experiments (IceCube, GRAND, POEMMA) have astrophysical neutrinos as primary science case.

Ultra-High-Energy Cosmic Rays: The Intersection of the Cosmic and Energy Frontiers (white paper prepared for Snowmass CF7),

A. Coleman, J. Eser, E. Mayotte, F. Sarazin, F. G. Schröder, D. Soldin, T. M. Venters, Astroparticle Physics 149 (2023) 102819, arxiv:2205.05845