

CORSIKA 8 Ray Tracing

Alan Coleman Maria Duran de las Heras

2023.02.29 (Leap Day!)

UPPSALA UNIVERSITET

In Ice Showers

lg(E/eV) = 16.0proton

lg(E/eV) = 17.5proton

In Ice Radio Emission

Refractive Trajectories

In CORSIKA7 (and 8, so far) assume line-of-sight

Good approximation for air showers

Bad approximation for ice showers

 $dv/dt = grad(n) / n^2$

dx/dt = v / n

AKA: these are the kinematic equations with $g \rightarrow g(h)$

Many integrators "on the market" to solve this \rightarrow Cash-Karp algorithm Includes estimations of the uncertainty per step \Rightarrow allows for adaptive step size Taken from "RadioPropa" which was taken from "CRPropa" :)

NuRadioMC Emission

Pulses generated as a function of frequency and angle from axis is modeled ("ARZ")

10 charge excess profiles per lg(E) = 0.1are stored as tables. Randomly choose one per simulation

Generate neutrino signal by convolving the signal model (ARZ) with tabulated charge excess profiles

Before the shower begins

generate a table of ray solutions from each antenna to "all" points in the ice

At run-time:

For each secondary, interaction look-up/interpolate the solution from the table

For now, tackle the main use case: translationally/cylindrically symmetric ice profiles

Ray Tracing

Ray tracing in ice models for monotonically changing index of refraction

Needed quantities:

- 1. launch angle?
- 2. receiving angle \rightarrow response of the antenna
- 3. length of path \rightarrow attenuation of signal (1/r)
- 4. time of flight \rightarrow when the signal arrives

Implemented in C8

- 1. ray propagator (arbitrary refraction scalar field)
- 2. basic reflections off of surface
- 3. solution finder for field which changes in 1D (along z, in this case)

To implement:

1. higher order optical effects (lensing, phase delays)

Propagates in **arbitrary** medium for which n(x) and Grad n(x) are defined

Implemented solution finder assuming that ice is cylindrically symmetric

```
minimize d {
    While (r < R<sub>max</sub>)
        propagate forwards
        perform reflections, as needed
    Find point on trajectory where r == R
    d = |r - r<sub>target</sub>|
}
```

minimization performed using numerical derivative

Comparison to NuRadioMC

IF: the refractive index changes exponentially, can solve paths analytically

Benchmark my implementation to solutions in NuRadioMC for exponential n-profile

Comparison for South Pole Ice (direct)

Comparison for South Pole Ice (direct)

Comparison for South Pole Ice (refracted)

Comparison for South Pole Ice (direct)

Comparison for South Pole Ice (refracted)

Seeding Issue

- 1. First seed (direct) is line-of-sight
- 2. Find actual (?direct?) solution
- 3. Seed (refracted) with $\cos(\theta_{\text{refract}}) = -\frac{1}{4}\cos(\theta_{\text{direct}}) + \frac{3}{4}$
- 4. Find actual (refracted) solution

The minimizer can skip over the refracted solution or is initialized in the wrong "valley"

Solution: when building the tables, use the solution of the adjacent cell as a seed, should be close to correct

Simulations with Radio

C8 Simulations

Simulations in ice Uniform refractive index End-point-formalism for <u>straight line propagation</u> 20 antennas spread across the Cherenkov cone

E = 10 PeV

E = 10 PeV

time (ns)

Comparison to NuRadioMC

Two models for radio emission in NuRadioMC ARZ is more advanced

Compare for a 10¹⁶ eV shower (not apples-to-apples)

These models have negative pulse, generally lacking in C8 Which is correct?

Use neutrino interactions instead of protons (thanks Felix Max!)

Working on robust table-generator (avoiding same-solution-twice issue)

Include higher-order optics (phase-shifts, etc.)

Feed C8 charge-excess profile to NuRadioMC and see pulses generated for various distances (NRMC may break down in the near field)

E = 10 PeV

