Multi-messenger Lighthouses of the Universe: the many extremes of Active Galactic Nuclei

Yuri Kovalev Max Planck Institute for Radio Astronomy, Bonn

Cosmic neutrino: IceCube, ANTARES, Baikal-GVD

Objectives

Extreme cosmic supercolliders

- **Active Galactic Nuclei:**
- 1. Acceleration of particles: especially, massive protons (recent observations indicate a presence of efficient acceleration - RadioAstron)
- 2. High-energy neutrino production

VLBI and AGN jets

- A direct observational probe of central engine and jets: Very Long Baseline Interferometry (VLBI).
- Parsec-scale structure
- Geometry
- Jet kinematics, acceleration

VLBI and AGN jets

- A direct observational probe of central engine and jets: Very Long Baseline Interferometry (VLBI).
- Parsec-scale structure
- > Geometry
- Jet kinematics, acceleration

Blach hole shadow: example how VLBI works

Blazars and high energy neutrinos: 0506+056

Allakhverdyan+24

VLBA – Fermi LAT 10-yr analysis

Blazars and high energy neutrinos: sample studies

71 events (2009-2022) with energy \geq 200 TeV, positional error < 10 deg².

2/3 of them: astrophysical origin.

Additional IceCube positional error: 0.8°.

AGN-neutrino post-trial p-value = 3×10⁻⁴, 3.6σ (>4σ if lower energy neutrin

This result confirms our original findings on the basis of 2009-2019 data. Significance increases following the increased number of neutrino events f

Low & high energy neutrino flares

- Blazars strongly correlated with IceCube day-scale lower-energy neutrino flares.
- P-value: 3.6×10⁻⁴.
- 11 out of 12 events with lowenergy neutrino flares are associated with blazars.
- Only 19 out of 48 events without neutrino flares have blazar counterparts.
- Seed photons of a wide energy range in blazars are required to reproduce this or
- More than one high energy neutrino per flare is detected.

Suray & Troitsky 2023

TXS 0506+056: VLBI ejections + light curves

Neutrino arrival: start of a major radio flare. Longer flares in radio due to larger synchrotron opacity. Parsec-scale component eject around (after) neutrino arrival.

 $t_{t} = 0.72 \text{ [x2.0 steps] mJy/bm, Frac. Pol. for I, } P \ge 1.03,$ 506+056, 2009-012-07, VLBA 15.4 GHz

10 AVE Program

2023.5

RATAN-600: When blazars produce neutrino?

Analysis of the sample confirms that neutrinos prefer to arrive during major radio flares. Significance: 5% only.

Confirmed by OVRO and Metsahovi (Hovatta+21). A dense radio monitoring is needed. See Liodakis+22.

Multi-band and multi-messenger studies: PKS 0239+108

PKS 0239+108 multi-messenger light curve:

Neutrino-radio-gamma flare coincidence p-value: 0.5 %.

What is going on?

- Bright AGN: p + y process is currently preferred (Stecker+91, Neronov+02, Kalashev+15, Cerruti 19, Bottcher+19)
- Target photons: from corona or jet base, E ~ 0.1-200 keV
- > Need high energy protons, $E \sim 10^{16} \text{ eV}$

- VLBI selects AGN with small viewing angle (blazars). Electro-magnetic and neutrino emission are both beamed.
- Note: observed radio-, γ-ray photons and neutrinos can be produced by different mechanisms, a multi-zone model.

Prospects: multi-messenger AGN studies

- Checking significance of the blazar-neutrino connection with new data from IceCube and KM3NeT
 Understanding extreme energy release in AGN
 Acceleration of relativistic protons: where and how?
 Origin of high energy neutrino: where and how? What is the source of seed photons?
- Observationally: what happens at (sub)parsec scales? Where is the action? Many ongoing e/m programs including thousands of hours of VLBI observations (complete samples and triggers).

Complications:

- > Require huge observing efforts to reach high significance
- > Most interesting regions are not transparent to radio waves at cm wavelengths. We want high radio frequencies.
- > Neutrinos tend to change their characteristics with time. How well is systematics known?

Summary

Indications are growing for blazars to be neutrino emitters. Doppler boosting is important.

High frequency radio / VLBI blazar observations are key to neutrino associations and studies.

Exciting times are coming to answer questions on proton acceleration and neutrino production together with IceCube and KM3NeT.

Extra slides

Blazars: potential neutrino candidates

- Pointed at us;
- Strong beaming;
- Compact, radio loud, typically gamma-ray loud;
- Recently, extreme brightness discovered by *RadioAstron*.
 Can accelerate particles, can produce photons, they boost radiation towards an observer can be neutrino emitters.
 90-95% of VLBI-selected samples of active galaxies are blazars with jets looking at us due to the beaming bias.
 VLBI flux density is a measure of its parsec-scale radio emission.

Fig. 2 Luminosity Doppler boosting factor for the case where n = 3 shown in polar coordinates. The radial lines indicate angles at intervals of 10 degrees and the circles the luminosity boosting factor. *Red*: $\beta = 0.5$, $\gamma = 1.15$; *grey*: $\beta = 0.9$, $\gamma = 2.3$; *green*: $\beta = 0.95$, $\gamma = 3.2$; *blue*: $\beta = 0.98$, $\gamma = 5.0$; $\beta = 0.99$, $\gamma = 7.1$; $\beta = 0.995$, $\gamma = 10.0$

Kellermann et al. (2007)

More examples: RATAN-600

Plavin+23

(a) PKS 1741–038: a likely source of the doublet among high-energy neutrino events selected in Section 2.1. This source is one of the brightest blazars in the sky with 4 Jy average VLBI flux density at 8 GHz. The light curves indicate that both the 2011 and the 2022 events were detected close to major radio flares.

(b) PKS 0735+178: a bright blazar with a major radio flare coinciding with the 2021 IceCube neutrino. The neutrinos detected in December 2021 by Baikal-GVD, KM3NeT and Baksan (BUST) observatories are also shown in the plot with their 50% containment regions.

(d) PKS 1502+106: selected for the highest temporal correlation between the neutrino detections and the radio flares in P20. Later monitoring

