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Introduction to cosmic rays (CRs)

https://icecube.wisc.edu/news/view/455 (Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC)

▶ Cosmic Rays (CRs):

• High-energy charged particles.

• Energy: 10
9
eV to 10

20
eV.

• ∼90% protons, ∼9% He nuclei

and rest heavy nuclei & e
±
.

▶ CRs diffuse by the interstellar
magnetic field, not point back to
sources.

▶ We lack the complete understand-
ing of their sources and acceleration
and propagation processes.

▶ Observables:

• Energy spectrum.

• Mass composition.

• Anisotropy.

• Multi-Messenger Astronomy.
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CRs energy spectrum

▶ It follows a power law,

Φ(E) = dN

dE dAdΩ dt
= K E

−γ
m

−2
s
−1
sr

−1
GeV

−1

▶ Well-known features,

• Knee at ∼ 10
15

eV.

• Ankle at ∼ 10
18

eV.

• GZK cut-off at ∼ 10
20

eV.

https://web.physics.utah.edu/whanlon/spectrum.html.
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Motivation

▶ Hardening and softening of CRs proton spectrum contradict the long-held belief of single power law before the Knee.

P. Lipari and S. Vernetto, Astropart. Phys. 120 (2020) 102441.
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Motivation

▶ Hardening and softening of CRs proton spectrum contradict the long-held belief of single power law before the Knee.

▶ Lack proton spectrum results from 100TeV to PeV energy range.

▶ Non-unique extrapolation to higher energy.

P. Lipari and S. Vernetto, Astropart. Phys. 120 (2020) 102441.
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The GRAPES-3 experiment
Location:

• Ooty, South India.

• 11.4
◦
N, 76.7

◦
E.

• 2200m a.s.l.

• 400 plastic scintillation detectors cover an area of 25,000m
2
.

• Large tracking muon telescope of area 560m
2
.

• ∼3× 10
6
extensive air showers (EASs)/day in TeV -PeV.
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Scintillator Detectors (SDs) array

▶ Plastic SDs Array:

• Total area: 25,000m
2
with 400 plastic SDs (1m

2
).

• 8m inter-detector separation with Hexagonal
geometry.

• Samples relative arrival time (t) and density (ρ) of
EAS charged particles.

• Generates EAS trigger.

• t → arrival direction (θ, ϕ).

• ρ → shower parameters (Ne , s, xc , yc ).
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EAS direction and parameters reconstruction
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▶ Step 1: Plane fit to the shower front,

χ
2
=

N

∑
i=1

[lxi +myi + nzi + c(ti − t0)]2.

where N: number of triggered SDs,

xi , yi , zi : coordinates of i
th

SD,

t0: time of shower front passes the origin,

c: speed of light,

l , m, n(θ, ϕ) are the angle cosines.

▶ Step 2: Correct for shower curvature using
shower size (Ne) and shower age (s).
V.B. Jhansi et al., JCAP07 (2020) 24.
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s = 1.27
 = 397265.2eN

GRAPES-3 data

NKG fit curve

▶ NKG function,

ρ
exp
i = C × ( rir0 )

s−2.0
(1 +

ri
r0
)
s−4.5

,

C =
Ne

2πr20

Γ(4.5 − s)
Γ(s)Γ(4.5 − 2s) .

where Ne : shower size → energy of CRs,

s: shower age parameter [0, 2],

r0: Moliere radius (103m for Ooty),

ri (xc , yc ): distance of i
th

SD from EAS core,

xc , yc : coordinates of EAS core.
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GRAPES-3 muon telescope (G3MT)
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▶ Samples the muon component of EAS.

▶ 16 independent modules (35m
2
); Total effictive area: 560m

2
.

▶ Detector unit: proportional counters (PRCs).

▶ 4 adjacent modules (super-module) have separate DAQ but synchronized with
EAS trigger.

▶ Concrete absorber (550 g cm
−2
).

▶ Energy threshold: 1 GeV× sec θµ, where θµ: muon incident angle.
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GRAPES-3 muon telescope (G3MT)

▶ PRC dimension: 6m× 0.1m× 0.1m.

▶ Four orthogonal layers of PRCs.

▶ Layer-1 & 3 → X-Z plane; Layer-0 & 2 → Y-Z plane.

▶ Discriminator threshold: 0.2 minimum ionizing particle (∼4 keV).

▶ PRCs hit info→ number of tracks/multiplicity (Nµ)→mass composition.

▶ Upper layer is scanned for a PRC hit starting from PRC number 0.

▶ Corresponding PRC hit in the bottom layer (according to projection of
shower axis in the plane), along with ± 1 PRC, is checked.

▶ Clustering of PRCs is considered once.

Layer-0

Layer-1

Layer-2 

Layer-3
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Monte Carlo (MC) simulations

▶ Detailed MC simulation study is done, which broadly involves,

1. EAS development simulation in Earth’s atmosphere using the CORSIKA package.

2. Simulation of the EAS particles in the SDs to estimate their corresponding ρ and t.

3. Detailed simulation of the EAS particles response in the G3MT using the GEANT4 package.

▶ EAS development simulation at GRAPES-3 site,

• CORSIKA v7.6900 package.

• QGSJET-II-04/FLUKA as high/low-energy
hadronic interaction model.

• H, He, N, Al and Fe.

• E: 1TeV to 10PeV, with E
−2.5

spectral slope.

• θ: 0
◦
to 45

◦
.

• 6.1× 10
7
EASs for each element.

▶ Simulation of the EAS particles in the SDs,

• Analyzed with an in-house developed software framework.

• Two datasets: dataset-1 with random core distributed within
150 m from array center for entire energy range,
dataset-2 with 60 m from the center array for E > 100TeV.

• Each EAS used ten times with a random core location to
improve statistics.

• t ← CORSIKA output.

• ρ ← GEANT-4 simulation of plastic SDs.

• Generate EAS trigger and EAS parameters.

▶ Datasets with E
−2.7

spectral slope and proposed by GST and H4a composition models are derived.
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Geant-4 simulation of G3MT: Geometric reconstruction

▶ GEANT4 simulation of G3MT involves,

• Geometric modeling of the G3MT (PRCs
and concrete absorber).

• Passing sample of EAS particles from
CORSIKA, followed by tracking and
recording the energy deposited by the
particle in the detector volume.

600 cm

10 cm

10 cm

Tungsten wire

P10 gas volume (60% transparency)

PRC iron tube

Hermetic seal

6 m45o

Layer-2

Layer-1

Layer-0

Layer-3

F. Varsi et al., JINST, 18 P03046 (2023).
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Geant-4 simulation of G3MT: EAS particles response

All events file DAT000248.root, entry num: 2
1.88 GeV, 23.83 deg; 0.91 GeV, 30.52 deg
30.86 GeV, 18.96 deg; 1.07 GeV, 21.55 deg

1.88 GeV (μ-)0.91 GeV (μ+) 30.86 GeV (μ-)1.07 GeV (μ+)
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Gaussian peak = 20.7 keV

▶ Muons below 1 GeV× sec θ threshold absorb in the absorber.

▶ Muons above 1 GeV× sec θ threshold make a clear passage through the module.

▶ Energy deposited by single muons in PRC peaks at 20.7 keV; consistent with experimental value of ∼20 keV.
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Geant-4 simulation of G3MT: EAS particles response

5.40 GeV (γ) 18.05 GeV (e+) 0.81 GeV  (γ)

Ele: file DAT000248.root, entry num: 27

▶ Electromagnetic and low energy hadronic components get ab-
sorbed.

▶ High energy hadrons generate an EAS in the absorber, make
complex PRC hits pattern.

▶ Multiple discrete PRC hits: more than one track.

▶ Clustering of PRC hits.

55.34 GeV (π-) 22.91 GeV (π-)

55.34 GeV: file DAT000248.root, entry num: 50
22.91 GeV: file DAT000248.root, entry num: 50
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Hadron punch-through

▶ EAS hadrons generate shower inside concrete ab-
sorber, make complex PRC hits pattern.

▶ Hadron punch-through: fraction of number of
tracks formed by hadrons.

▶ Hadrons are produced mostly closer to the shower
axis; Their number falls rapidly with an increase in
the distance from EAS core.

▶ ∼10% at 20 m and reduces to ∼2% at 60 m.
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Selection quality cuts and data summary

▶ GRAPES-3 data: 1 January 2014 to 26 October 2015.

Quality cut Number of
surviving

EASs

% of
surviving

EASs

1. Triggered 1.75×109 100.0

2. Abnormal days based on Ne spectrum 1.58×109 90.0

3. Successful event matching & muon
tracking

1.17×109 66.8

4. Angle and NKG reconstruction 8.47×108 48.3

5. Shower age (s) between 0.02 and 1.98 8.41×108 48.0

6. Circular area within 50 m radius 3.96×108 22.6

7. Zenith angle < 17.8
◦

1.33×108 7.5

8. Hadron punch-through < 2% 6.27×107 3.6

9. 10
4.0

≤ Shower size (Ne) < 10
6.0

7.81×106 0.4
100− 50− 0 50

X [m]

100−

50−

0

50

100

Y
 [

m
]

60 m

50 m

▶ Fiducial area: 4123 m
2

F. Varsi et al., Phys. Rev. Lett. 132, 051002 (2024).
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Observed shower size distribution and live time

▶ For live time (Tlive) calculation: distribution of inter-event time separation (∆t) fit with exponential function.

f (∆t) = Ae
−R∆t

,

Tlive = N/R,

where R: time rate of the EAS passing the selection quality cuts, A: intercept and N = 6.27× 10
9
is the total number of EAS

after the selection quality cuts.
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Live time = 3.97e+07 s
= 459.9 days
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Trigger efficiency, total efficiency and acceptance of the GRAPES-3 array
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▶ εT reaches 90% at nearly 40TeV, 45TeV, 60TeV, 70TeV and 80TeV for H, He, N, Al and Fe, respctively.

▶ εR nearly 100% above 200TeV and total efficiency (εtot) = εT × εR .

▶ Acceptance of GRAPES-3 array,

AΩ(Ei ) =
πA

2
εtot(Ei )(cos 2θl − cos 2θu)

where [θl , θu ]: upper and lower zenith angle range and A is fiducial area.

▶ AΩ = ∼1200m
2
sr for εtot =100%.

▶ Error in fit parameters are used to calculate the systematic uncertainty in the estimation of AΩ.
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Energy calibration and resolution
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Bias

▶ Datasets with −2.7 spectral slope splited into 2 parts and first part was used for Ne and energy relation.

▶ Modeled with linear function on log-log scale.

logE = p0 × logNe + p1.

▶ Second parts was used to calculate distribution of Ereco−Etrue
Etrue

.

▶ energy bias = Median ( Ereco−Etrue
Etrue

).

▶ energy resolution = σ ( Ereco−Etrue
Etrue

).
▶ Bias within ±3% and resolution is 60% at 50TeV and 35% at 1.3 PeV.
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Muon multiplicity distribution (MMD)
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NBD fit curves

▶ The muon multiplicity distribution (MMD) is sensitive to the composition of the PCRs.

▶ Simulated MMDs fitted with negative binomial distribution (NBD).

NBD(Nµ;µ,σ) =
Γ (Nµ + µ

2

σ2−µ
)

Γ(Nµ + 1)Γ ( µ2

σ2−µ
)
( µ

σ2
)

µ
2

σ2−µ (σ
2 − µ

σ2
)
Nµ

,

▶ where µ is the mean value and σ is standard deviation of the MMD.
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Paramterization of MMD
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▶ µ and σ of observed data MMD is
confined between corresponding fit-
ted µ and σ for simulated proton
and iron (extreme limits) primaries.

▶ µ: Linear function.

logµ = A + B × logNe .

▶ σ: Quadratic function.

logσ = C +D × logNe + E × (logNe)2.
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Mass composition: Gold’s Unfolding algorithm

▶ Gold’s unfolding procedure is employed twice.

• Estimation of relative composition of each primary group from
observed MMD for each shower size bin.

• Estimation of the CR proton energy spectrum from the
corresponding shower size distribution.

▶ For each Ne bin,

• Response matrix (R1) generated from parameterization of MMDs.

• Gold’s iterative unfolding algorithm is used.

n(Ak+1
i ) = n(Ak

i )
(R1

T
C
T
CN⃗µ)i

∑j (R1
TCTCR1)ji n(Ak

j )
.

where Cαβ =
δαβ√
n(Nµ)

.

• Composition proposed by GST composition model used as prior.

• Optimal stopping iteration: minimum of WMSE.
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Relative composition of proton primary

▶ Relative composition of proton primary (a1)

1. 65± 0.3
+4.9
−6.8% at Ne = 10

4.1
.

2. 47± 3.5
+6.3
−10.5% at Ne = 10

5.9
.

▶ Contribution from the following sources of systematic uncertainty is
calculated.

1. Unfolding algorithm (within 0% to 2%).

2. Initial prior A⃗ (within ±1%).

3. Bias from unfolding procedure (within −0.15% to +0.18%).

4. Different spectral profiles to generate the response matrix (within
+3.7%/−5.8% to +0%/−7.6%).

5. Smoothing algorithm (within +0.7% to −4.1%).

6. Limited statistics of MC simulations (from 3.2% to 6.0%).
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Proton size distribution and unfolding

▶ Observed Ne distribution (N
obs
e ): convoluted distribution of different

primaries.

▶ Proton Ne distribution (Ne1): Each bin of N
obs
e weighted with proton

composition (a1) in corresponding bin.

▶ Response matrix (R2) generated using simulation data with spectral
slope of −2.7.

▶ Gold’s algorithm is used iteratively as,

n(E k+1
i ) = n(E k

i )
(R2

T
C
T
CN⃗e)i

∑j (R2
TCTCR2)ji n(E k

j )
.

▶ Initial prior selected with a spectral hardening near 200 TeV.

▶ Smoothing is applied on the E⃗ after each iteration.

▶ Optimal stopping iteration: minimum of WMSE.

▶ The final proton energy spectrum is not smoothened.
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Proton energy spectrum
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▶ Proton energy spectrum: 50TeV to 1.3 PeV.

▶ The differential flux (Φ(E)i ) for i
th

energy bin is calculated from,

Φ(E)i =
1

Tlive
( n(Ei )
∆Ei ⋅ AΩ,i

) ,

where n(Ei ): number of EAS in i
th

energy bin, ∆Ei : bin-width of i
th

energy bin, AΩ: acceptance of GRAPES-3 array, Tlive : live-time of GRAPES-3
data taking for this analysis.

▶ Scale with a factor of E
2.7

to show the spectral hardening near 165 TeV.
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Proton energy spectrum

▶ Contribution from following sources of systematic uncertainty
is calculated.

1. Unfolding algorithm (within −0.02% to +0.11%).

2. Initial prior E⃗ (within −0.73% to +1.20%).

3. Bias from unfolding procedure (within ±0.40%).

4. Acceptance of GRAPES-3 EAS array (from 2.05% to
0.04%).

5. Different spectral profiles to generate the response
matrix (within −4.15% to +0.71%).

6. Limited statistics of MC simulations (from 0.42% to
2.06%).

7. Systematic uncertainty in relative proton composition
(from +3.97%/−6.49% to +10.75%/−12.37%).
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Modeling the spectral hardening

▶ Modeled with smoothly broken power law (SBPL), given as,

ΦS (E) = Φ0 (
E

50TeV
)
γ1 ⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 + ( E

Eb
)

1
w
⎤⎥⎥⎥⎥⎥⎥⎥⎦

(γ2−γ1)w

where Φ0: flux normalization constant at 50TeV,

Eb : energy corresponding to position of spectral break,

γ1 and γ2: spectral indices before and after Eb ,

w : smoothness parameter for the spectral break.

▶ By considering only the statistical uncertainties during the
modeling,

Φ0 = (1.370 ± 0.005) × 10
4
m

−2
sr

−1
s
−1

GeV
−1
,

Eb = 166.4 ± 7.9TeV ,

γ1 = −3.12 ± 0.02,

γ2 = −2.56 ± 0.02,

w = 0.22 ± 0.06,

with χ
2
/ndf = 3.36/3.
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Significance the spectral hardening

▶ Null hypothesis: Modeled with single power law (PL), given as,

ΦP(E) = Φ0 (
E

50TeV
)
γ

▶ Alternate hypothesis: Modeled with SBPL.

▶ Test statistics (TS): χ
2
P - χ

2
S with 3 dof.

▶ For statistical uncertainties only,

• χ
2
P = 897.90 and χ

2
S = 3.36.

• TS = 894.54 with 3 dof.

• p-value = 1.35× 10
−193

.

• significance (σ) = ϕ
−1(1 − p) = 29.7σ.

where ϕ
−1
: inverse of the cumulative distribution of the standard

Gaussian.

▶ For statistical and systematic uncertainties,

• χ
2
P = 18.67 and χ

2
S = 0.16.

• TS = 18.51 with 3 dof.

• p = 3.45× 10
−4
; σ = 3.6σ.
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Proton energy spectrum
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▶ At lower energy:

• Good agreement with
ISS-CREAM,
CREAM-I+III, and
DAMPE.

▶ At higher energy:

• Good agreement with
KASCADE QGSJET
01.

F. Varsi et al., Phys. Rev. Lett. 132, 051002 (2024).
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Summary

▶ This work used MC simulation data based on QGSJET-II-04/FLUKA hadronic interaction models.

▶ For H, AΩ saturates to ∼1200m
2
sr for θ < 17.8

◦
and fiducial area used in this analysis.

▶ Energy resolution for H is 60% at 50TeV which improves to 35% at 1.3 PeV.

▶ The data recorded by GRAPES-3 from 1 January 2014 to 26 October 2015 was used, which contains 7.81×106 events after
selection cuts.

▶ Proton energy spectrum is presented from 50TeV to 1.3 PeV, providing the connection between direct and indirect
measurements.

▶ Proton energy spectrum has a good overlap with direct experiments (ISS-CREAM. CREAM-I+III, DAMPE) at low energy and
indirect experiment (KASCADE QGSJET 01) at high energy.

▶ Evidence of spectral hardening near 165TeV is presented with a significance of 29.7σ by considering the statistical
uncertainties and 3.6σ by considering the statistical and systematic uncertainties.
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Thank you
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Composition: Unfolding Vs Chi-Square minimization
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Gaussian randomization test: Simulation
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Gaussian randomization test: Data
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Muon saturation for different zenith angle and primaries
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Muon saturation for different zenith angle and primaries
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Hadron punch-through for different zenith angle and shower size bin
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Core resolution

4.0 4.5 5.0 5.5 6.0 6.5

e
log N

0

1

2

3

4

5

6

7

8

) 
[m

]
rσ

C
o

re
 r

es
o

lu
ti

o
n

 (

]°, 17.8°: [0.0θ

F. Varsi (KIT) CR Proton Spectrum by GRAPES-3 June 6, 2024 8 / 13



Reconstruction efficiency
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GST model

T. K. Gaisser, T. Stanev, and S. Tilav, Front. Phys., 2013, 8(6).
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H4A model

T.K. Gaisser, Astropart. Phys. 35 (2012) 801.
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Check reliability of response matrix
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Propagation of systematic error in proton relative composition into energy spectrum
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