Simulating radio emission from air showers with CORSIKA 8 – Relevance for energy and mass reconstruction

IAP - High-Energy group Seminar Nikolaos Karastathis

Introduction

Cosmic Rays from different sources arrive at Earth carrying valuable information

Nikolaos Karastathis

Radio emission from Extensive Air Showers

Macroscopic Description

Longitudinal development of an Extensive Air Shower

- Shower maximum (X_{max}) the slant depth at which the particle number is maximal
- Primary mass dependence on X_{max} e.g. proton showers are expected to penetrate deeper in the atmosphere compared to iron showers

Fluence footprint of an Air Shower over LOFAR

- Antennas measure the radio waves emitted from the air shower
- Radio detection technique is used by many observatories and is planned to be used in future experiments
- Energy deposited to the ground in the form of radio waves is referred as "fluence" – creates a footprint
- Xmax is associated with the fluence footprint

astron.nl

Simulations are crucial for reconstruction of EAS properties

- Match measured fluence footprint to the "best" simulation through the X² minimization procedure – only signal strength is used
- Reconstruct Xmax through fluence
 footprint associate with primary mass
- Reconstruct primary energy through
 radiation energy quadratic dependence
- Simulations need to be rock solid!

$$\chi^2_{radio} \,=\, \sum_{antennas} \left(rac{P_{ant} \,-\, f_r^2 P_{sim} \left(x_{ant} \,-\, x_0, \,y_{ant} \,-\, y_0
ight)}{\sigma_{ant}}
ight)^2$$

arXiv:2103.12549

Microscopic modelling of the radio emission

- Used in Monte Carlo simulations
- Both treat individual particle tracks and calculate the resulting electric field summing up the contributions of all tracks
- Both derived from first principles, but under different assumptions
- Inherently different algorithms Have never been directly compared for the case of air showers
- Level of agreement is a strong indicator of our understanding of the radio emission

New simulation tools to accommodate growing experimental needs

- Existing software like CORSIKA 7 limit simulation capabilities
- Monolithic FORTRAN structure makes it hard to maintain and update in CORSIKA 7
- CORSIKA 8 based on modularity and flexibility next generation simulations
- One of the goals of this work is to create a radio module as an integral part of CORSIKA 8

CORSIKA 8 architecture

The development of a new radio module in CORSIKA 8

Radio module architecture

- Modularity, flexibility, upgradeability
- Direct formalism comparisons previously
 not possible
- New propagators can be easily implemented to accommodate specific experimental needs
- Multithreading capabilities
- Baseline interface that allows inclusion of complex scenarios

Multithreading capabilities

- Parallelization of the radio calculation over antennas
- Proof of principle that the code is modern and thread
 safe in order to take advantage of parallelization
 techniques
- Significant boost in performance smaller runtimes

Quantitative comparisons for similar showers

- Cherry picked a CORSIKA 8 100 PeV iron induced vertical shower comparison with CORSIKA 7 and ZHAireS for similar showers
- The radio module in CORSIKA 8 is able to fully simulate the radio emission from realistic air showers

Quantitative comparisons for fluence footprints

Nikolaos Karastathis

What explains the intensity difference?

Effect of track length on radio simulations

- How is the fluence footprint and hence mass estimation affected?
- How is the **radiation energy** and hence primary **energy estimation** affected?
- Approximating a trajectory with smaller, finer tracks is "closer to reality" – but computationally expensive
- Track length indirectly adjusted by deflection angle θ (maxRad)

Effect of track length on longitudinal profiles

- 100 showers per maxRad value and simulation software
- Does the track length affect the agreement between CORSIKA 7 and CORSIKA 8?
- Better agreement in terms of particle
 - number for 0.2 rad

Different track lengths affect radiation energy

- 30–80MHz frequently used in current experiments and 50–350MHz for SKA
- For 0.2 rad the differences are large More radiation energy is simulated with CORSIKA 8
- For 0.001 rad the differences become much smaller – More radiation energy is simulated with CORSIKA 7
- In 30-80MHz band for very small tracks (0.001 rad) both software agree within ~10% (5% in energy scale)

CORSIKA 8 vs CORSIKA 7 – mean difference in terms of $\%$ (0.2rad)		
Radiation Energy	$30\mathrm{MHz}$ to $80\mathrm{MHz}$	$50\mathrm{MHz}$ to $350\mathrm{MHz}$
Total Radiation	-31.9%	-53.6%
Energy		
Geomagnetic	-31.8%	-53.5%
Contribution		
Charge Excess	-46.1%	-31.2%

CORSIKA 8 vs CORSIKA 7 – mean difference in terms of % (0.001rad)		
Radiation Energy	$30\mathrm{MHz}$ to $80\mathrm{MHz}$	$50 \mathrm{MHz}$ to $350 \mathrm{MHz}$
Total Radiation	10.2%	0.2%
Energy		
Geomagnetic	10.1%	-0.2%
Contribution		
Charge Excess	4.6%	7.8%

Salan Karlsruher Institut für Technolo

Different track lengths affect fluence footprint

- For smaller tracks (0.001 rad) the differences are smaller but still considerable
- Differences in the tracking algorithms used by
 CORSIKA 8 and CORSIKA 7
- CORSIKA 8 showers have a narrower lateral distribution compared to CORSIKA 7 – they "spread" less, potentially stronger coherence effects

Different track lengths affects the lateral profile

CORSIKA 8 vs CORSIKA 7 for the 0.001 rad case

Quantitative comparisons for fluence footprints for the 0.001 rad case

Quantitative comparisons for pulses for the 0.001 rad case – 50-350MHz

Effect of track length on longitudinal profiles

- Does the track length affect the number of particles?
- Separate comparison study for CORSIKA 8 and CORSIKA 7
- CORSIKA 7 simulates more particles for the 0.001 rad
- CORSIKA 8 simulates more particles for

the 0.2 rad

Effect of different track lengths in CORSIKA 7

- Effect of different track lengths in CORSIKA 7 –
 default value vs very small tracks
- Smaller tracks (0.001 rad) simulate consistently more radiation energy – radiation follows the increased number of particles for 0.001 rad
- The fluence footprint is also affected on a few
 % level
- For the CORSIKA 8 case the differences are even more pronounced there due to different tracking algorithm

0.2rad vs 0.001 rad – mean difference in terms of % (C7 CoREAS)			
Radiation Energy	$30\mathrm{MHz}$ to $80\mathrm{MHz}$	$50\mathrm{MHz}$ to $350\mathrm{MHz}$	
Total Radiation	-12.3%	-10.0%	
Energy			
Geomagnetic	-12.7%	-10.4%	
Contribution			
Charge Excess	-12.9%	-12.4%	

Known LOFAR vs AERA Xmax results mismatch

- Different track lengths affect the radiation energy and the fluence footprint – As a result, Xmax and energy reconstruction are affected
- Worth redoing the Xmax reconstruction analysis for selected events of both LOFAR and AERA measurements using simulations with small track length
- Redo analysis with CORSIKA 8 radio 2 formalisms available – Validate CORSIKA 7 and CORSIKA 8

arXiv:2310.19963

Direct comparison of "Endpoints" vs ZHS

"Endpoints" vs ZHS is affected by track length

- Agreement on radiation energy depends on track length
- For very small tracks, both algorithms practically converge – strong indication that radio calculations are well understood
- Level of agreement independent of primary
 particle energy or type

Karlsruher Institut für Technologie

"Endpoints" vs ZHS fluence footprint comparison

- Better agreement for small track lengths
- Deviations are larger in areas where the signal
 is weaker
- This is not the case for larger tracks in the 30–80MHz band though
- A good agreement between the 2 formalisms solidifies the idea that the radio emission calculations in air showers is well understood

A new X_{max} reconstruction scheme

Sal CIT

There is information hidden the pulse shape

• Standard χ^2 minimization procedure **discards**

pulse shape information

• Information is hidden in the pulse shape though,

that can be used to reconstruct Xmax

• Pulse shape changes with distance from the

shower core

Pulse shape changes with Xmax

- Showers with same characteristics but different Xmax have different pulse shapes
- Different X_{max} will produce different footprint on the ground

Pulse shape information on the frequency domain

• In the frequency domain the pulse

shape information translates as the

slope of the frequency spectra

Introducing the "fluence percentage"

- The fluence percentage is the rate at which ۲ energy is being deposited to the antenna
- It is normalized over the total fluence hence • amplitude information is taken out
- The "difference in area" (grey) can be used as a ۲ metric for Xmax reconstruction

$$f_j = rac{\sum_{i=1}^j ig(A_i^2(v) \, - \, cor_i^2(v)ig)}{\sum_{i=1}^N ig(A_i^2(v) \, - \, cor_i^2(v)ig)}$$

200m from the

Frequency [MHz]

Salar für Technologie

Parabola fitting to reconstruct Xmax

- Each point represents a simulation
- The "difference in area" of each simulation is the average of all antennas and all polarizations
- The smallest the "difference in area" the closer to the X_{max} we are looking for
- Need a cluster of simulations around the Xmax we are looking for

Benchmarking the reconstruction scheme

- Benchmarking the method with 4500 simulations
- Addition of generated noise in different levels
- Simulations are organized in bins with respect to zenith angle

Benchmarking results for 2 frequency bands

- 50–350MHz is aimed for SKA
- 30–80MHz cannot be realistically used for LOFAR as LOFAR antennas are highly resonant around 60 MHz
- Noise seems to throw off the method's resolution
- Successful de-noising of pulses makes this method tempting to use
- Could be used as a second order reconstruction to standard \mathcal{X}^2 minimization procedure

Benchmark results $(50 \text{ MHz to } 350 \text{ MHz})$			
Noise level	Bias $(g cm^{-2})$	Resolution	
		(gcm^{-2})	
No noise	-2.7	9.7	
5% noise	-2.2	10.7	
10% noise	-9.0	14.2	
20% noise	-27.6	21.1	

Benchmark results $(30 \text{ MHz to } 80 \text{ MHz})$		
Noise level	Bias $(g cm^{-2})$	Resolution
		$(\mathrm{gcm^{-2}})$
No noise	-4.5	11.1
5% noise	-4.9	14.1
10% noise	-5.9	18.8
20% noise	-8.9	22.6

Contributions of my PhD

- 1. A radio module in CORSIKA 8 is now available that acts as a baseline for current and future radio experiments
- 2. 2 different radio formalisms were compared and found to agree
- Radio module acts as a powerful diagnostics tool CORSIKA 7 and CORSIKA 8 were found to agree within 10% in radiation energy (5% energy scale)
- 4. Simulation details like track length do affect:
 - the simulated radiation energy and hence cosmic ray energy reconstruction
 - the simulated fluence footprint and hence primary mass reconstruction
- 5. An X_{max} reconstruction scheme that utilizes the pulse shape

Nikolaos Karastathis