Cosmic Ray Interactions in the Milky Way

Neeraj Amin Institute for Astroparticle Physics 01.08.2024

1900 - Charles Thomson Rees Wilson, inventor of the Cloud chamber, discoverer of atmospheric radiation!

1900 - Charles Thomson Rees Wilson, inventor of the Cloud chamber, discoverer of atmospheric radiation!

1912 – Victor Franz Hess measured increased levels of radiation at higher altitudes. But ...

1900 - Charles Thomson Rees Wilson, inventor of the Cloud chamber, discoverer of atmospheric radiation!

1912 – Victor Franz Hess measured increased levels of radiation at higher altitudes. But ...

1928 – Robert Millikan concluded the cosmic origin of this radiation, and named them "Cosmic rays"!

1900 - Charles Thomson Rees Wilson, inventor of the Cloud chamber, discoverer of atmospheric radiation!

1912 – Victor Franz Hess measured increased levels of radiation at higher altitudes. But ...

1928 – Robert Millikan concluded the cosmic origin of this radiation, and named them "Cosmic rays"!

1929 – Arthur Compton confirmed that cosmic rays are charged particles.

What are they?

What are they?

What are they?

Need for Precise Cross section Measurements

Need for Precise Cross section Measurements

W, Z, h, b, t, ...

v

Need for Precise Cross section Measurements

Current cross section uncertainties \rightarrow determination of Halo size (*L*)

Improved rel. uncertainty on Halo size L

C. Evoli et. al PRD 101 (2020) 023013

Y. Genolini, D. Maurin, I.V. Moskalenko, M. Unger (arXiv: 2307.06798)

Cosmic Discoveries → New Physics?

Break in the spectrum, E > 200 GeV/n

P. Mertsch, 2018

Cosmic Discoveries → New Physics?

Fluorine Anomaly:

- Predicted F/Si from B/C ratio.
- Observed F/Si < Predicted F/Si!</p>

Lithium Excess:

- Predicted Li/C from B/C ratio.
- Observed Li/C > Predicted Li/C!

Fragmentation cross section uncertainties (?)

NA61/SHINE

NA61/SPS Heavy Ion and Neutrino Experiment

- Fixed target experiment on the H2 beamline at CERN
- SPS range : 13A GeV/*c* 160A GeV/*c*.

NA61/SHINE

NA61/SPS Heavy Ion and Neutrino Experiment

Time Projection Chamber (TPC)

Schematic front view of the Vertex TPC

TPC Track Reconstruction

Nuclear Fragmentation

Inelastic interaction leading to production of lighter fragments

Abrasion: interaction of spectator nucleons

Ablation: disintegration of excited pre-fragment

Pilot Run on Fragmentation Studies

<u>Beam ID:</u>

- Z^2 from $(dE/dx)_{S1}$
- (A/Z) from *t.o.f.* difference = $t_{S1} t_A$

Fragment ID :

- Solution $(dE/dx)_{MTPC}$
- (A/Z) from $\Delta x \propto R(A,Z)$

Fragments as measured in the MTPC.

Pilot Run on Fragmentation Studies

<u>Beam ID:</u>

- Z^2 from $(dE/dx)_{S1}$
- (A/Z) from *t.o.f.* difference = $t_{S1} t_A$

<u>Fragment ID :</u>

- Z^2 from $(dE/dx)_{MTPC}$
- (A/Z) from $\Delta x \propto R(A,Z)$

Fragments as measured in the MTPC.

Fit to the Carbon Fragments in the MTPC

Fit to the Boron Fragments in the MTPC

Fit to the Beryllium Fragments in the MTPC

Fit to the Lithium Fragments in the MTPC

Analysis

For each target setting,

$$N_{\rm fragments} \rightarrow P_{\rm total} \rightarrow P_{\rm T}$$
 -

 $P_{\rm T} \rightarrow \left| \boldsymbol{\sigma}_{\rm T} = -\frac{\ln\left(1 - \boldsymbol{P}_{\rm T}\right)}{n_{\rm T} d_{\rm T}} \right| \quad \mathbf{v}$

where, $n_{\rm T}$ is the number density, $d_{\rm T}$ is the target thickness

Data-driven corrections to the cross section:

- Fragment selection in the MTPC
- Beam selection
- Absorption inside the target

_					
Nucleus (i)	Target	$N_{\rm b}$	N_{i}	$P_{i \rightarrow X}^{\mathrm{IN/OUT}} = \left(1 - \frac{N_i}{N_b}\right)$	$\mathbf{P}^{\mathrm{T}} = \left(\frac{P^{\mathrm{IN}} - P^{\mathrm{OUT}}}{1 - P^{\mathrm{OUT}}}\right)$
¹³ C	PE	35810	30347	0.152 ± 0.002	0.084 ± 0.003
	С	31501	26887	0.146 ± 0.002	0.077 ± 0.004
	OUT	7953	7357	0.075 ± 0.003	-
¹¹ C	PE	12300	10595	0.139 ± 0.003	0.068 ± 0.006
	С	10490	9144	0.128 ± 0.003	0.057 ± 0.006
	OUT	2669	2466	0.076 ± 0.005	-
15 N	PE	1692	1191	0.296 ± 0.011	0.098 ± 0.030
	С	1292	949	0.265 ± 0.012	0.059 ± 0.030
	OUT	315	246	0.219 ± 0.023	-
14 N	PE	1607	1302	0.190 ± 0.010	0.102 ± 0.019
	С	1383	1151	0.168 ± 0.010	0.078 ± 0.020
	OUT	349	315	0.097 ± 0.016	-
¹¹ B	PE	1929	1379	0.285 ± 0.010	0.061 ± 0.028
	С	1743	1261	0.276 ± 0.011	0.049 ± 0.028
	OUT	473	360	0.239 ± 0.020	-
¹⁰ B	PE	3561	2872	0.193 ± 0.007	0.109 ± 0.012
	С	3100	2581	0.167 ± 0.007	0.081 ± 0.013
	OUT	785	711	0.094 ± 0.010	-

Results: Mass-changing Cross sections

Results: Mass- and Charge-changing Cross sections

Results: Mass-changing Cross section with a Proton Target

Results: Boron Production Cross sections with a Proton Target

Measurement dominated by statistical uncertainty!

Summary and Outlook

- Cosmic ray interaction in the Galaxy → a window into CR propagation.
- Propagation parameters dominated by cross section uncertainties.
- Precise cross sections may answer recent discoveries hinting at new physics.
- Mass-, charge-changing, and boron production cross sections are measured,

 $\sigma^{\text{total, B}} = (77 \pm 5 \text{ (stat.)} \pm 1 \text{ (syst.)}) \text{ mb}$

- Most precise measurement at $p_A > 10A \text{ GeV}/c$.
- Fragmentation studies feasible with NA61/SHINE.
- Publication under collaboration review.
- Data-driven results, corrections and systematic uncertainties!

- Faster readout,
 ~100Hz → ~1kHz
 ~10× more interactions
 - $N_{int.} \ge N_{desired}$

Upgrade of MTPC readout electronics (2021)