Speaker
Jackson Goodman
(University of Pennsylvania)
Description
We use the $\mathop{Spin}^c$ Dirac operator to generalize a formula of Kreck and Stolz for the s invariant of $S^1$ invariant metrics with positive scalar curvature. We then apply it to show that the moduli spaces of metrics with nonnegative sectional curvature on certain 7-manifolds have infinitely many path components. These include certain positively curved Eschenburg and Aloff-Wallach spaces. Furthermore, we use a $\mathop{Spin}^c$ version of the s invariant to discuss moduli spaces of metrics of positive scalar and twisted scalar curvature on $\mathop{Spin}^c$ manifolds.