Speaker
David Wraith
Description
Taking as our starting point the classic paper of Eells and
Sampson, we use harmonic maps as a tool to investigate spaces and moduli spaces of Ricci non-negative metrics, and also to study concordances between such metrics. In the first case, among other things, we recover some recent results of Tuschmann and Wiemeler. In the second case, we uncover an interrelationship between concordance, isotopy and isometry for Ricci non-negative metrics, which stands in contrast to the situation for positive scalar curvature.