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Desired result: higher proton polarization

©

What high-impact operational challenge can be addressed by MI/AI? = Polarized
protons.

From the source to high energy RHIC experiments, more than 20% polarization is lost.

The EIC asks for 70% proton polarization, which is 5% higher than even a good RHIC
run.

Polarized luminosity for longitudinal collisions scales with P4, i.e., a factor of 2 reduction!

The proton polarization chain depends on many delicate accelerator settings form Linac
to the Booster, the AGS, and the RHIC ramp.

Even 5% more polarization would be a significant achievement.
Approximately 2/3 of the polarization loss is in the injector chain.

Accelerator time in RHIC is much less available than in the injector chain.

=» Focus: polarization increase from the injector chain.
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The polarized proton accelerator chain
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RHIC Polarized Beam Complex

Pol. At Max | Polarimeter

Energy [%]

2 Siberian Snakes/ring
SourcetLinac 1.1 82-84 Spin flipper

Booster 2.5 ~80-84 ) AN

Absolute Polarimeter (H jet)p 1 pC Polarimeters
AGS 23.8 67-70 p-Carbon
RHIC 255 55-60 Jet, full store avg*

* Includes both ramp loss and store decay
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Relative Ramp Polarization 200 MeV Polarimeter

Loss
(Run 17, full run avg)

AGS 17 %

‘AGS Polarimeter
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Topics that can improve polarization

* (1) Emittance reduction
* (2) More accurate timing of tune jumps

* (3) Reduction of resonance driving terms
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Optimizers for different applications

»  more

Global Modeling +
Feed-forward Corrections

Make fast system model

- provide initial guess (i.e. warm
start) for settings or fast compensation

less e assumed knowledge of machine
( N\ ( .
Model-Free Model-guided
Optimization Optimization
\/ ______
J. Kirschner
Observe performance change after a
setting adjustment Update a model at each step
2 gstfmate direqion or apply - use model to help select the next
heuristics toward improvement ;
point
\ J
gradient descent Bayesian optimization
simplex reinforcement learning
ES
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Characteristics of polarization optimizations

1. Optimal parameter settings are hard to find, and the optimum is difficult to
maintain.

2. The data to optimize on has significant uncertainties.
3. Good, approximate models of the accelerator exist.
4. A history of much data is available.

Is this type of problem suitable for Machine Learning?
Why would ML be better suited than other optimizers and feedbacks?
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Reinforcement Learning for accelerators

Extension of our initial goal of using physics-informed Bayesian Optimization: Can RL have advantages over
BO for accelerator controls?

Operational experience: Many system parameters are measured in accelerators, where many are found to
be implicitly related to the performance optimum, even if the accelerator model does not capture this
relationship. = Experience to golden hand operators.

+ RL uses more data about the accelerator (as state variables) even if relationship to the optimum is not
known.

+ RL follows an optimum setting, even when the system changes = accelerator control not only optimization.

-- RL requires millions of data points and may seem inapplicable to accelerators, but with an improved model
may deliver many of these points, making RL feasible.

Reinforcement Learning empirically learns the relationships between system parameters
and objectives, even if they are not closely related by accelerator models.

This relationship remains useful, even under small changes = RL follows the optimum.
First RL application for more proton polarization at BNL: Bunch merging by RF

manipulation, because an exceptionally good model exists.
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AGS Bunch Merging

Real mountain range
data showing 2-to-1
bunch merge in AGS

« Before transferring to AGS, beam bunch is
split into 2 longitudinally to reduce the space
charge effect
-> reduce emittance -> improve polarization

Wall current monitor
(WCM) generates
voltage vs time

= | signal. Each
separated in time by
N turns (N accelerator
1| periods)

« Bunches are later merged before AGS
extraction;

* Requires expert tuning of many parameters:
o Prone to drift over time;
o Time consuming;

« Controls: RF voltages, phases

« Goal: Obtain a “good” merged bunch profile:
o Emittance preservation:

] i )
- No par_“CIe LOSL _ 2D scope signal Device name,
Gaussian shape; (time, voltage) parameter,

= No “baby” bunches; every N turns value f/
o Stable final bunch profile: S— ——
e . (arbitrary time)
= Not shifting left to right;

- Not bour.10|ng up and dOWI’\; Cartoon representation of accelerator with WCM,
= Merged in the center; RF cavities (arbitrary number), and input/output




Bunch splitting in Booster / merging in AGS

Splitting in the Booster and merging after AGS accelerator reduces space charge and emittance
growth =» more polarization
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Three RF amplitudes (h=3, 6, 12) in the AGS during bucket manipulation and merging.

= We have set up Reinforcement Learning for the merging section.

15 . . 15 e e 15 15 : : 15 : . :
1.0 4 1.0 1.0 1.0 1.0
00 00 00 00 00
10 B 10 10 10 ] 100
e e s e 4 2 [ 2 4 e 4 2 0 2

Accelerating RF h=6  Attracting RF h=3 | Close bucketlng h=12  Combining h=6 Final bucketing h=6




Machine Setup

« Bunch merge uses cavity harmonic
o Merge period ~ 900-1650 ms;

o Three cavities in harmonic 12 (B, BC, C), two in harmonic 6 (JK, K); s
o The settings are initially set to close to 0, so the RFs cannot merge

the bunches well;
o RL agent is then applied to correct the RF settings; -

 Input: using system starting and ending voltages for each cavity; -
o Rfh12: 4 voltages; e \ S

o Rfh6: 2 voltages;
o Phase difference fixed to be pi/ 2;

« Output:
o Final emittance; -> Used as the rewards
Final bunch position;
Final bunch length;
Bunch position variation;
Bunch length variation;

O
O
O
O

WCM signals show the initial RFs cannot merge

the bunches well
1




Reinforcement Learning Tuning
test - varying 6 voltage points for each RF system

- RFvoltages Bunch traces Last trace .. . . .
| Goal: minimize the longitudinal emittance

after bunch merging

~
/

Original \ ] RF amplitudes as function of time have
S—— been optimized in experiments.

Start Automatic readout of longitudinal
emittance not yet available, test used
simulated bunch lengths as reward.

1ststep - | ﬁ Plan: F:heck whether Reinforcement
/ \ Learning has advantages over BO.
Plan: Include also RF phases as actors
2 step and coherent oscillations as state
/ Y, variables.

; r Determine useful state variables

3step. « measurable

* related to the reward




Simulation Results ~ ~ " 'i_ T T IAML j
- First simulator in Bmad: Slow; N A E \
§ | | S
« Julia simulator; E: lﬂ,\ W \
+ SAC agent: 10,000 initial _ A AN RN 4 N L[ [ ]

samples + 4,000 training steps; ' —e TR T

+ 3% emittance growth;

Empirical target functions ' | Agent learned functions
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System Side Preparations

« A Python manager is developed to collect bunch information from live machine
data; This application will be used by the RL in the next machine test;

« We can now acquire input signals from the wall current monitors (offloading

oscilloscope data) and show results in a Jupyter notebook.
o Evaluating multiple commercially available digitizer products for performance
comparison to FPGA-based system;
o Work on buffer memory implementation (to store multiple turns);
o Work on the hardware configurations to match the actual system specifications;

 We have a Zynq Ultrascale FPGA evaluation board and an FMC expansion card

to digitize the WCM signals:
o 12-bit conversion at 1,000 Mega samples per second
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Optimization with Gaussian Processes

* GP model built with scikit-learn library

« A probability distribution over possible functions
that fit a set of points

« Mean function + Covariance function

f(x) ~ GP(m(x), k(x,x))

X, Xy X3

 Kernel: covariance function k(x;, x;) of the input variables

2. The data to optimize on has

k(xg,x1) - k(xg,xe) significant uncertainties.
* Covariance matrix K = k(X,X) = : : : | 3. Models of the accelerator
k(xe,x1) - k(xe xp) exist

» At a sample point x;, Gaussian process returns mean u(x;|X) = m(x;) +
k(x, X)K~1(f (X) — m(X)) and variance ¢2(x;|X) = k(x;, x;) — k(x;, X)K "1k (X, x;)
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Polarized collider performance vs. beam intensity

Collider luminosity, £

L« N_Z N = intensity/ bunch

£ ¢ = tran. emittance

Polarized collider figure of merit
(for polarization P):

L P2 transverse spin

FoM =
[, P4 longitudinal spin

Since both emittance and
polarization degrade with intensity
figure of merit decreases rapidly

FoM dependence on intensity
closer to linear in N than
quadratic.

Polarization(%)

Pol vs Intensity
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Emittance reduction = less depolarization

To reduce and maintain emittances we

« optimize Linac to Booster transfer

« optimize Booster to AGS transfer

« correct optics and orbit in Booster and AGS

« use orbit responses to calibrate models of Booster and AGS.

« split bunches in the Booster for space charge reduction and re-merge
them at AGS top energy.
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Xopt Overview

https://christophermayes.github.io/Xopt/

o
.A/ .
Text inputl on,) * Badger GUI interface
%
max_evaluations: 6400 /
# create Xopt object. Xopt imp|ement3 a number Of

X = Xopt(YAML)

YAML file different algorithms:

# take 10 steps and view data
for _ in range(10):
X.step()

» Various Bayesian optimizations:
o Single/Multi-objective BO, Trust
Region BO, Bayesian Algorithm
Execution, custom model priors,
etc.

X.data

» Genetic optimization (CNSGA),
RCDS, Nelder-Mead Simplex,
Extremum seeking;

) \J ﬁ xpeiment acilit

da:‘;:sse
Accelerator simulation
18
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Digital Twin for hadron injector sections

A Digital Twin is a bi-directional connection between an
accelerator’s physics model and its control system.

Dispersion at 42 MeV 10 MS1DPBO01

1

05

0

-05F

Dispersion (m/4)
Response (mm/A)
o

b

-1.5 . . -10 . |
20 25 30 35 20 25 30 35
s position (m) s position (m)

Example digital-twins for CBETA: combine Bmad with EPICS

Q'd'rl:e’a?%%nc?"é control system: DT results are displayed by
the control system, just like measured accelerator
data.

* Control system = DT: Power supply settings
automatically load into the physics model.

Great for continuous comparison of operations and
model.

Great for offline development of operations procedures.
Great for virtual diagnostics.

» Additional benefit: Neural network can be trained
to predict slow to simulate beam behavior in

operations time, e.g. space charg

e dynamics.

» ML control routines always have the up-to-date

physics model available.

|
| measured and
\ Simulated orbits

DT currently
being prepared
for the Booster.




Result: Automatic BO for Booster injection

Controls: Power supply currents of two correctors
and two quadrupoles at the end of the LtB line

Beam size decrease in both planes in the BtA line in
correspondence with intensity increase

Bayesian optimization of the Booster injection process.

Top: power supply currents of two correctors (tv95,
th115) and two quadrupoles (qf12, qd13) in the LtB line.

Middle: beam intensity after Booster injection, scaping,
and acceleration.

Bottom: Beam size measurements in the BtA line
during Bayesian optimization.

Control system: This Bayesian Optimization is
now available as a control system application to
operators.
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Result: Automatic BO for AGS injection

Algorithm efficiently found settings that were different, but at least as good as the
previously optimized ones, automatically maintain the AGS injection at optimal
performance without human intervention.

5 __Intensity transmission efficiency ' 05 ‘ _Brightness
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= Optimization of current while observing the brightness.



Uncertainty Quantification from orbit responses in the Booster

Vertical Booster Orbit Reponse for corrector bd3-tv at 92ms

Horizontal Booster Orbit Reponse for corrector ba8-th at 92ms

A6 A8

B4 B6 c2 c8 D2 D8 E2 E4 E6 E8 F2 F4

=» Good agreements between Booster data and Bmad model are
eached, with small discrepancies between model and measurement

within 1 mm)

=» chi-squared/DF = 1.4 for model-experiment. Reasons are analvzed bv

Joint Posterior (Negative Corrector)

Al A3 A5 A7 Bl

(a) Least square fitting to reducz

B5 B7 C1 C3 C5

D3 D5

E5 E7 F1 F3 F5 F7

Joint Posterior (Positive Corrector)

0.010 A

Bayesian

126000

i A 1+ | Orbit response data can be used to find
INAYAVASAYS +/ ¢ and quantify unknown parameters (e.g.,
s | DV WY 1Y, power supply scaling factors, magnet
;x”'{ ‘ 5 Lo 3 misalignment etc.) in real accelerators,
AR § . by Lucy Lin, Nathan Urban, and
V x N « V| v Christopher Kelly.
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(b) Uncertainty Quantification.
=» The main power supply transfer

functions (a) do not reduce y?,
(b) their UQ is consistent with O

uQ
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=» Other error sources are being

analyzed.

Horizontal quad transfer function variation: dkh
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Simulation error

Sim. orbit responses can deviate from data far outside &l

of BPM uncertainty for unknown reasons 2l x-BPM 1 (all data)

Kick +22A x-corrector a2 10t

0.0
expt-sim (mm)

'BPM error (10)

|
|
30 ]
|

x-BPM 7 (all data)

orbit response (mm)

20 |

10

0.0
expt-sim (mm)
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Bayesian UQ

« Bayesian UQ to probe and quantify sources of simulation error.

* Inputs are probability distributions:

* “Likelihood”: distribution of data given params
normal centered on simulation

i = sim(perturbed; params) — sim(unperturbed; params)
o =2 x bpm err.

« “Priors”; expert knowledge of parameters, e.qg. T ] .-
Some additive parameter: additive; ~ Normal(u;,00) /= T

Some multiplicative parameter: multiplicative, ~ LogNormal(u;, o;) Bayes’ Theorer
* Output is the “posterior”: distribution of the parameters given the data

« Sample using Markov chain Monte Carlo methods via the Julia “Turing”
package.

(“Evidence” not needed for MCMC)




Dataset

©

The “2022” dataset contains orbit measurements
where each corrector in turn is set to -22A, OA and
+22A.

3-5 measurements per corrector setting.
Focus on x-plane orbit. Build orbit responses

«  POSITIVE: +22A-0A

«  NEGATIVE: -22A — 0A

Studied fluctuation between meas. of each orbit
response over all possible pairings.

. Subtract simulation result to account for current fluctuations
. Recenter about mean to focus on spread.

Found a number of outliers in BPMs 6 and 12 that
required pruning.

(BPM 6 has known issues)
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Preliminary UQ result

Performed UQ conditioned on 45 orbit response
measurements
. 1 pairing (after+before) for each perturbed corrector

Probabilistic model includes prior/likelihood
distributions for
. ‘var’ values (LogNorm 1.0 £ 0.01)
. Measurement errors (Normal,
o =sqrt(2) * BPM err ~ 0.21 mm)
Does not account for

. Measurement errors on readback currents on static
magnets or correctors

*  Any uncertainty on machine characteristics or other
internal params (e.g. coefficients in transfer func)

Observe interesting pattern in output var values,
some well distinguished from unity.

Possible hint for origin of discrepancies?

var

1.01 -

1.00

0.99

0.98

‘var’ values in posterior

L I

I

W [ T T = T
VW

x-quad



SciBmad a ML-oriented Toolkits (Libraries)

Toolkit

Dynamic Aperture Program

Advantages the toolkit:
Fully differentiable (reverse and forward)
=>» excellent for Neural Network optimizations

=>» Excellent for Bayesian optimization with slope information

* Cuts down on the time needed to develop programs.
+ Cuts down on programming errors (via module reuse).

* Provides a simple mechanism for lattice function calculations from within control
system programs.

 Standardizes sharing of lattice information between programs.

* Increased safety: Modular code provides a firewall. For example, a buggy module
introduced into the toolkit will not affect programs that do not use it.

This project is

. funded by DOE-HEP IBS Simulatiqn Programs
* has a growing list of collaborators @V

« has a weekly wise people meetings Etc.

. => is looking for collaborators
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