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Desired result: higher proton polarization
• What high-impact operational challenge can be addressed by MI/AI? è Polarized 

protons.

• From the source to high energy RHIC experiments, more than 20% polarization is lost.

• The EIC asks for 70% proton polarization, which is 5% higher than even a good RHIC 
run.

• Polarized luminosity for longitudinal collisions scales with P4, i.e., a factor of 2 reduction!

• The proton polarization chain depends on many delicate accelerator settings form Linac 
to the Booster, the AGS, and the RHIC ramp.

• Even 5% more polarization would be a significant achievement.

• Approximately 2/3 of the polarization loss is in the injector chain.

• Accelerator time in RHIC is much less available than in the injector chain.

è Focus: polarization increase from the injector chain. 



The polarized proton accelerator chain

RHIC, later HSR



RHIC Polarized Beam Complex
Max tot. 
Energy
[GeV]

Pol. At Max 
Energy [%]

Polarimeter

Source+Linac 1.1 82-84

Booster 2.5 ~80-84

AGS 23.8 67-70 p-Carbon

RHIC 255 55-60 Jet, full store avg*

Relative Ramp Polarization 
Loss
 (Run 17, full run avg)

AGS 17 % 

RHIC 8 %

* Includes both ramp loss and store decay
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Topics that can improve polarization
• (1) Emittance reduction

• (2) More accurate timing of tune jumps

• (3) Reduction of resonance driving terms



Optimizers for different applications

Courtesy Auralee Edelen 



Characteristics of polarization optimizations
1. Optimal parameter settings are hard to find, and the optimum is difficult to 

maintain.

2. The data to optimize on has significant uncertainties.

3. Good, approximate models of the accelerator exist.

4. A history of much data is available.

Is this type of problem suitable for Machine Learning?
Why would ML be better suited than other optimizers and feedbacks?



Reinforcement Learning for accelerators

Reinforcement Learning empirically learns the relationships between system parameters 
and objectives, even if they are not closely related by accelerator models.

This relationship remains useful, even under small changes è RL follows the optimum.

Extension of our initial goal of using physics-informed Bayesian Optimization: Can RL have advantages over 
BO for accelerator controls?

Operational experience: Many system parameters are measured in accelerators, where many are found to 
be implicitly related to the performance optimum, even if the accelerator model does not capture this 
relationship. è Experience to golden hand operators.

+ RL uses more data about the accelerator (as state variables) even if relationship to the optimum is not 
known.

+ RL follows an optimum setting, even when the system changes è accelerator control not only optimization.

-- RL requires millions of data points and may seem inapplicable to accelerators, but with an improved model 
may deliver many of these points, making RL feasible.

First RL application for more proton polarization at BNL: Bunch merging by RF 
manipulation, because an exceptionally good model exists.
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AGS Bunch Merging

• Before transferring to AGS, beam bunch is 
split into 2 longitudinally to reduce the space 
charge effect

     -> reduce emittance -> improve polarization

Real mountain range 
data showing 2-to-1 
bunch merge in AGS

Wall current monitor 
(WCM) generates 
voltage vs time 
signal. Each 
separated in time by 
N turns (N accelerator 
periods)

• Bunches are later merged before AGS 
extraction;

• Requires expert tuning of many parameters:
o Prone to drift over time;
o Time consuming;

• Controls: RF voltages, phases

• Goal: Obtain a “good” merged bunch profile:
o Emittance preservation:

§ No particle lost;
§ Gaussian shape;
§ No “baby” bunches;

o Stable final bunch profile:
§ Not shifting left to right;
§ Not bouncing up and down;
§ Merged in the center;



Bunch splitting in Booster / merging in AGS
Splitting in the Booster and merging after AGS accelerator reduces space charge and emittance 
growth è more polarization

Three RF amplitudes (h=3, 6, 12) in the AGS during bucket manipulation and merging.

è We have set up Reinforcement Learning for the merging section.

Accelerating RF h=6 Attracting RF h=3 Close bucketing h=12 Combining h=6 Final bucketing h=6
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• Bunch merge uses cavity harmonic number 6 and 12:
o Merge period ~ 900-1650 ms;
o Three cavities in harmonic 12 (B, BC, C), two in harmonic 6 (JK, K);
o The settings are initially set to close to 0, so the RFs cannot merge 
      the bunches well;
o RL agent is then applied to correct the RF settings;

• Input: using system starting and ending voltages for each cavity;
o Rf h12: 4 voltages;
o Rf h6: 2 voltages;
o Phase difference fixed to be pi / 2;

• Output:
o Final emittance; -> Used as the rewards
o Final bunch position;
o Final bunch length;
o Bunch position variation;
o Bunch length variation;

Machine Setup

WCM signals show the initial RFs cannot merge 
the bunches well



Reinforcement Learning Tuning
test - varying 6 voltage points for each RF system
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Original

Start

1st step

Bunch traces Last traceRF voltages
Goal: minimize the longitudinal emittance 
after bunch merging
RF amplitudes as function of time have 
been optimized in experiments.

Automatic readout of longitudinal 
emittance not yet available, test used 
simulated bunch lengths as reward.

Plan: check whether Reinforcement 
Learning has advantages over BO.

Plan: Include also RF phases as actors 
and coherent oscillations as state 
variables.

Determine useful state variables
• measurable
• related to the reward

2nd step

3rd step



• First simulator in Bmad: Slow;

• Julia simulator;

• SAC agent: 10,000 initial 
samples + 4,000 training steps;

• 3% emittance growth;

Simulation Results

Empirical target functions Agent learned functions

To heavy reliance 
on the model 
leads to 3% 
emittance growth



14

• A Python manager is developed to collect bunch information from live machine 
data; This application will be used by the RL in the next machine test;

• We can now acquire input signals from the wall current monitors (offloading 
oscilloscope data) and show results in a Jupyter notebook.
o Evaluating multiple commercially available digitizer products for performance 

comparison to FPGA-based system;
o Work on buffer memory implementation (to store multiple turns);
o Work on the hardware configurations to match the actual system specifications;

• We have a Zynq Ultrascale FPGA evaluation board and an FMC expansion card 
to digitize the WCM signals: 
o 12-bit conversion at 1,000 Mega samples per second

System Side Preparations



Optimization with Gaussian Processes
• GP model built with scikit-learn library

• A probability distribution over possible functions 
that fit a set of points

• Mean function + Covariance function

• Kernel: covariance function 𝑘(𝑥! , 𝑥") of the input variables

• Covariance matrix K = 𝑘 𝑋, 𝑋 =
𝑘(𝑥#, 𝑥#) ⋯ 𝑘(𝑥#, 𝑥$)

⋮ ⋱ ⋮
𝑘(𝑥$, 𝑥#) ⋯ 𝑘(𝑥$, 𝑥$)

• At a sample point 𝑥!, Gaussian process returns mean 𝜇 𝑥!|𝑋 = 𝑚 𝑥! +
𝑘 𝑥! , 𝑋 𝐾%# 𝑓(𝑋) − 𝑚 𝑋  and variance 𝜎& 𝑥!|𝑋 = 𝑘 𝑥! , 𝑥! − 𝑘(𝑥! , 𝑋)𝐾%#𝑘(𝑋, 𝑥!)

2. The data to optimize on has 
significant uncertainties.

3. Models of the accelerator 
exist



Polarized collider performance vs. beam intensity
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Collider luminosity, ℒ 

ℒ ∝
𝑁!

𝜀
N = intensity/ bunch
𝜀 = tran. emittance

Polarized collider figure of merit 
(for polarization P): 

ℒ	𝑃4
ℒ	𝑃5

FoM = 

Since both emittance and 
polarization degrade with intensity 
figure of merit decreases rapidly

FoM dependence on intensity 
closer to linear in N than 
quadratic.

Pol vs Intensity

Emittance vs Intensity

AGS extraction

Polarized beam collider FOM

transverse spin

longitudinal spin

Impact of intensity increase on 
FoM given emittance and 
polarization dependence at AGS 
extraction



Emittance reduction è less depolarization

To reduce and maintain emittances we

• optimize Linac to Booster transfer

• optimize Booster to AGS transfer

• correct optics and orbit in Booster and AGS

• use orbit responses to calibrate models of Booster and AGS.

• split bunches in the Booster for space charge reduction and re-merge 
them at AGS top energy.



Xopt Overview
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https://christophermayes.github.io/Xopt/ 

Accelerator simulation

Online Control R&D 

Python API

YAML file

Experiment facility

Text input

Xopt implements a number of 
different algorithms:

• Various Bayesian optimizations:
o Single/Multi-objective BO, Trust 

Region BO, Bayesian Algorithm 
Execution, custom model priors, 
etc.

• Genetic optimization (CNSGA), 
RCDS, Nelder-Mead Simplex, 
Extremum seeking;

https://christophermayes.github.io/Xopt/


Digital Twin for hadron injector sections
Ø Additional benefit: Neural network can be trained 

to predict slow to simulate beam behavior in 
operations time, e.g. space charge dynamics.

Ø ML control routines always have the up-to-date 
physics model available.

Example digital-twins for CBETA: combine Bmad with EPICS 
bidirectionally.

A Digital Twin is a bi-directional connection between an 
accelerator’s physics model and its control system.

• Bmad è control system: DT results are displayed by 
the control system, just like  measured accelerator 
data.

• Control system è DT: Power supply settings 
automatically load into the physics model.

Great for continuous comparison of operations and 
model.
Great for offline development of operations procedures.
Great for virtual diagnostics.

DT currently 
being prepared 
for the Booster.



Result: Automatic BO for Booster injection

• Controls: Power supply currents of two correctors 
and two quadrupoles at the end of the LtB line

• Beam size decrease in both planes in the BtA line in 
correspondence with intensity increase

Bayesian optimization of the Booster injection process.

Top: power supply currents of two correctors (tv95, 
th115) and two quadrupoles (qf12, qd13) in the LtB line.

Middle: beam intensity after Booster injection, scaping, 
and acceleration.

Bottom: Beam size measurements in the BtA line 
during Bayesian optimization.

Control system: This Bayesian Optimization is 
now available as a control system application to 
operators.



Result: Automatic BO for AGS injection
Algorithm efficiently found settings that were different, but at least as good as the 
previously optimized ones, automatically maintain the AGS injection at optimal 
performance without human intervention.

è Optimization of current   while   observing the brightness.



Uncertainty Quantification from orbit responses in the Booster

è Good agreements between Booster data and Bmad model are 
reached, with small discrepancies between model and measurement 
(within 1 mm)

è chi-squared/DF = 1.4 for model-experiment. Reasons are analyzed by
(a) Least square fitting to reduce chi-squared.
(b) Uncertainty Quantification.

Orbit response data can be used to find 
and quantify unknown parameters (e.g., 
power supply scaling factors, magnet 
misalignment etc.) in real accelerators,
by Lucy Lin, Nathan Urban, and 
Christopher Kelly.

dkv/m
2

Bayesian 
UQ

Bayesian 
UQ

Classical 𝜒! analysis

è The main power supply transfer 
functions (a) do not reduce 𝜒&, 
(b) their UQ is consistent with 0

è Other error sources are being 
analyzed.

𝜒! 











SciBmad a ML-oriented Toolkits (Libraries)

Advantages the toolkit:
Fully differentiable (reverse and forward)
è excellent for Neural Network optimizations
è Excellent for Bayesian optimization with slope information
• Cuts down on the time needed to develop programs.
• Cuts down on programming errors (via module reuse).
• Provides a simple mechanism for lattice function calculations from within control 

system programs.
• Standardizes sharing of lattice information between programs. 
• Increased safety: Modular code provides a firewall. For example, a buggy module 

introduced into the toolkit will not affect programs that do not use it.

Toolkit Dynamic Aperture Program

Control System Programs

Lattice Design Program

Etc.

IBS Simulation Programs
This project is
• funded by DOE-HEP
• has a growing list of collaborators
• has a weekly wise people meetings
•                     è is looking for collaborators
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Thank you and 
Questions?


