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Background

Slow Extraction Spill

Most physics experiments at CERN are
fixed target experiments, where sub-
atomic particles are accelerated to very
high energies and then are steered to-
wards a stationary target made out of
solid, liquid, or gas. Instead of deliver-
ing the particle beam in a short burst
(as done in the LHC), the beam is usu-
ally extracted slowly to provide a con-
tinuous stream of particles. At CERN,
several transfer lines connect the Su-
per Proton Synchrotron (SPS) with
the fixed target experiments hosted in
the North Experimental Area (NA).

Power Supply Ripples

Power supply ripples are periodic volt-
age fluctuations in a DC power supply,
caused by residual AC components af-
ter rectification or by dynamic current
draw from nonlinear devices. These rip-
ples appear as harmonics of 50 Hz and
higher in the extracted beam intensity,
leading to unwanted fluctuations in the
spill, which negatively affects the exper-
iments.

Previous Work

Power supply ripples have always been
a problem in the SPS. Before the Long
Shutdown 2 (LS2) in 2021, the fluctu-
ations around 50 Hz, 100 Hz, and 150
Hz were corrected by injecting a suit-
able voltage modulation in the main
quadrupole circuit QF at adjustable
phases and amplitudes, which needed
infrequent manual adjustments. Af-
ter the upgrades performed during LS2,
those manual interventions became in-
feasible and were replaced by numer-
ical optimization using the BOBYQA
algorithm. However, only the suppres-
sion of spill ripples at around 50 Hz was
within the requirements of the exper-
iments. Therefore, in 2023, Adaptive
Bayesian Optimization (ABO) with
Empty Bucket Channeling (EBO) was
deployed, which in particular improved
the quality around the 100 Hz fre-
quency. One drawback of ABO is the
slow speed with which it can react to
changes in the environment.

Our Contribution

We present an implementation of the GP-
MPC approach that is compatible with
the stable-baselines3 API and test it on
the problem of correcting power sup-
ply ripples in the slow extraction spill
from CERN’s SPS. To propagate uncer-
tainty through time, we implement an
uncertainty-aware kernel instead of using
moment matching.

GP-MPC

Environment

+

Model

Trajectory planning

starting
point

first action
of optimal
trajectory action

reward observation

new experience

Figure 1: Schematic overview over the use of MPC in an RL setting.

We try to solve a sequen-
tial optimization problem
that is based on aMarkov
Decision Process. The
agent interacts with the
environment, observes its
resulting state, and re-
ceives feedback in the
form of rewards or penal-
ties. Its goal is to maxi-
mize the long-term cumu-

lative returns. With Model Predictive Control (MPC), the agent keeps a model of the
world and uses it to plan the optimal sequence of actions over a finite decision horizon.
After doing the first action of the optimal trajectory, the internal model is updated ac-
cording to the actual behavior of the environment. Since the model improved, the optimal
trajectory is re-planned. When a probabilistic model is used, the agent is able to quantify
its uncertainty when planning. This allows the agent to avoid exploring suboptimal tra-
jectories, even when being optimistic.
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Figure 2: A Gaussian Process conditioned
on six random points of a sine curve. We
show the mean prediction and the confi-
dence region.

One choice for such a probabilistic model is
a Gaussian Process, which can be thought
of as a function that, upon input x, does
not return a precise point f (x), but instead
a“fuzzy point” specified by a mean µ(x) and
a variance σ2(x), in a way, such that for any
finite choice x1, . . . , xn of inputs, the joint
distribution of the outputs is a multivariate
normal distribution. A Gaussian process is
fully determined by its mean function and
its kernel function. The choice of a ker-
nel heavily influences the shape of the pos-
sible functions that can be approximated. If
the kernel contains hyperparameters, they need to be fitted, usually by maximizing the
marginal likelihood of the model.

Experimental Setup

We test our GP-MPC implementa-
tion directly on the SPS. Because the
rate at which the power supply ripples
change is relatively slow, we increase
the difficulty by injecting random rip-
ples at multiples of 50 Hz in one of the
quadrupole power converters and run
the GP-MPC agent on a second power
converter on the same circuit, where it
tries to inject a voltage modulation that
suppresses the resulting ripples.

Results

The GP-MPC agent was trained with
just 300 interactions and was able to
solve the problem almost every time,
even during training. We tested dif-
ferent settings and found that the Ex-
pected Improvement acquisition func-
tion works better than the Upper Con-
fidence Bound acquisition function for
this problem. A Soft Actor Critic
(SAC) agent tested on the same prob-
lem needed about 40 episodes until it
was able to solve the problem reliably.

Findings
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Conclusions

GP-MPC proved to be a viable alterna-
tive to existing RL algorithms for the
problem of power supply ripple suppres-
sion in the transfer line between the SPS
and the fixed target experiments in the
NA. Although traditional RL algorithms
like SAC are able to solve the prob-
lem, they require a substantial amount
of interaction with the environment un-
til they learn a reliable policy. Our GP-
MPC implementation required only a
few hundred samples to solve the prob-
lem. Additionally, once the agent is
trained, it can be used in a mode where
it behaves risk-averse and avoids trajec-
tories with high uncertainty.

Future Research

More Uncertainty-Aware Kernels

One of our main questions was if it
is possible to use an uncertainty-aware
kernel in the GP to propagate uncer-
tainty through time. Previous imple-
mentations of GP-MPC used methods
like moment matching or approxima-
tions with Taylor series to evaluate a
GP on an uncertain input. Our results
indicate that uncertainty-aware ker-
nels can be used as an elegant alterna-
tive. However, we only implemented
one such kernel that is based on the
traditional RBF kernel and it would
be beneficial to have more choice.

Constraints

Another addition to previous GP-
MPC implementations is the availabil-
ity of the Expected Improvement Ac-
quisition Function. This acquisition
function has the advantage that it is
non-negative, which makes it easy to
incorporate constraints into the trajec-
tory planning by multiplying the ex-
pected improvement with the proba-
bility that no constraint violation will
occur.
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