Neural-Network-based Surrogate Simulator for Particle Accelerator with High Dimensional Control Settings

Emmanuel Goutierre / Hayg Guler

H. Guler¹. C. Bruni¹ J. Cohen², M. Sebag²

Tuesday 28th November 2023

¹Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)

²Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)

Motivations

Surrogate models: from aggregate to 6D

- Models are good for reproducing beam aggregate properties (size, emittance, Edep, ...)
- aggregates could be insufficient to get all properties of a beam
- by definition, full beam reconstruction gets all the beam properties
- 6D beam is perfect as input for a new simulation
- Full 6D beam helps to better understand disturbed beam
- help to better understand the beam halo
- better understand collective effects

- Surrogate Models for Particle Accelerator
 - Example of the optimization of a machine
- 2 LinacNet
 - Physics-aware modelling
 - Neural Network for 6D distribution
 - Training Procedure
 - Results
- Conclusion

- Surrogate Models for Particle Accelerator
 - Example of the optimization of a machine
- LinacNe
 - Physics-aware modelling
 - Neural Network for 6D distribution
 - Training Procedure
 - Results
- Conclusion

How does a surrogate model work?

Figure: Training of a Surrogate Model

Why Surrogate Models of Particle Accelerator Simulator?

General motivation concerning the need for surrogate models for particle accelerators.

Fast Execution

• ms vs. several minutes

Optimization

Offline & Online

Real-time Feedback

 Runnable in a control room during operations

- Surrogate Models for Particle Accelerator
 - Example of the optimization of a machine
- LinacNet
 - Physics-aware modelling
 - Neural Network for 6D distribution
 - Training Procedure
 - Results
- Conclusion

ThomX: A Compact Compton Source

Figure: Linac of ThomX.

ThomX

- X-ray source by Compton backscattering
- Compact Accelerator (70m²)
- In commissioning at the IJCLab since May 2021

Linac

Accelerate the electron beam up to 50 MeV

Goal

Use machine learning to tackle the problem of adjusting the Linac parameters to fulfill the beam requirements for the transfer line.

Example of the optimization of a machine

Accelerator Tuning

00000

\mathcal{A} : Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields
 - Steerer Fields
 - Quadrupoles Fields

00000

A: Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields Steerer Fields
 - Quadrupoles Fields

\mathcal{B} : Hidden Parameters

- Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

000000

A: Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields Steerer Fields
 - Quadrupoles Fields

\mathcal{O} : Observables

- 17 Observables
 - Position and Charge at BPMs
 - Charge at ICTs
 - Position and Size at Screen
 - Charge at Faraday Cup

\mathcal{B} : Hidden Parameters

- Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

A: Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields
 - Steerer Fields Quadrupoles Fields

\mathcal{O} : Observables

- 17 Observables
 - Position and Charge at BPMs
 - Charge at ICTs
 - Position and Size at Screen
 - Charge at Faraday Cup

\mathcal{B} : Hidden Parameters

- Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

F: Objective function

- Quality of the beam
- Function of (A, B)

\mathcal{A} : Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields
 - Steerer FieldsQuadrupoles Fields

B: Hidden ParametersMechanical Misalignment

- Iviecnanical ivilsalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

\mathcal{O} : Observables

- 17 Observables
 - Position and Charge at BPMs
 - Charge at ICTs
 - Position and Size at Screen
 - Charge at Faraday Cup

F: Objective function

- Quality of the beam
- Function of (A, B)

Goal

- Optimize : find set of parameters (A) depending on hidden parameters (B) to get minimal objective function (F) with the aid of observable(\mathcal{O})
- Classical way: manual tuning, heavy load on expert

- Surrogate Models for Particle Accelerator
 - Example of the optimization of a machine
- 2 LinacNet
 - Physics-aware modelling
 - Neural Network for 6D distribution
 - Training Procedure
 - Results
- Conclusion

- Surrogate Models for Particle Accelerator
 - Example of the optimization of a machine
- LinacNet
 - Physics-aware modelling
 - Neural Network for 6D distribution
 - Training Procedure
 - Results
- Conclusion

Multi-Layer Perceptron: A First Model

Figure: Training Curve

Figure: MLP as a surrogate model of a Linac

Multi Layer Perceptron

- Stack all inputs and outputs
- ullet 10k simulations sampling ${\mathcal A}$ and ${\mathcal B}$
- Minimization of the L2 loss

Physics-aware: Cutting the non-causal links

Figure: LinacNet with 6 modules corresponding to 6 diagnostic stations on the Linac

LinacNet

- Split input and output according to their position in the Linac
- Neural Network Architecture reflecting a Linac architecture
- Each Module models one Diagnostic (could be real or virtual)

LinacNet

- Surrogate Models for Particle Accelerator
 - Example of the optimization of a machine
- LinacNet
 - Physics-aware modelling
 - Neural Network for 6D distribution
 - Training Procedure
 - Results
- Conclusion

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

- Surrogate Models for Particle Accelerator
 - Example of the optimization of a machine
- LinacNet
 - Physics-aware modelling
 - Neural Network for 6D distribution
 - Training Procedure
 - Results
- Conclusion

Accelerator as a sequence of modules

- We divide our accelerator in a sequence of sub-parts
- Each part could contain controls / measurements (real or virtual)
- Learning a full machine could be complicated, costly

Good for

- transfer to a real machine
- optimize: could be done by part / module
- Retrain locally due to drift in the data
- Address larger machines

Sequential Network as a Multi-Objective Optimization

- General question in machine learning
- how to learn a sequence of models, tasks?
- Could be heterogeneous : classification, regression, etc
- Conflicting between modules could deteriorate the global loss
- Independent Errors : $Err_{i,i+1}\left(d_i,d_{i+1},a;\theta\right) = I\left(f_{i,i+1}\left(d_i,a;\theta\right),d_{i+1}\right)$
- End-to-End Errors : $\mathit{Err}_{0,i}\left(d_{0},d_{i},a;\theta\right)=\mathit{I}\left(f_{0,i}\left(d_{0},a;\theta\right),d_{i}\right)$

Scalarization of the Multi-Objective Loss

$$\mathcal{L}_{w}(d, a; \theta) = \sum_{i=1}^{N} w_{i-1,i} \textit{Err}_{i-1,i}(d_{i-1}, d_{i}, a; \theta) + w_{0,i} \textit{Err}_{0,i}(d_{0}, d_{i}, a; \theta)$$

One example of learning a sequence : MGDA¹

• Dynamic weighting of the module that moderates conflicting loss between modules

$$w^* = \underset{w}{\operatorname{arg \, min}} \mathcal{L}_w, \qquad w > 0, \qquad \sum_{i=1}^N w_{i-1,i} + w_{0,i} = 1$$

Properties

- Common descent direction to all objectives
- Stop when encountering a Pareto-invariant point

- Surrogate Models for Particle Accelerator
 - Example of the optimization of a machine
- LinacNet
 - Physics-aware modelling
 - Neural Network for 6D distribution
 - Training Procedure
 - Results
- Conclusion

Numerical results

Memory Constraints

- · GPU A100 80 GB
- · Max Available Batch size
 - · One segment: 200
 - · All segments: 16

. .

Limitation to:

- · 20 h for one segment
- $\cdot\,$ 100 h for all segments

Training Time

Method

- Extensive hyperparameter search on the first segment.
- Apply these parameters to all segments.
- Only Multi-Objective Strategy Study on the whole accelerator.

Training settings

- Aggregation methods compared
- Max works a bit better than mean

Multi task learning

- Different methods compared
- End2End with dedicated weights works the best

Numerical results

Particle Independent Errors for Each Segment

Particle End-to-End Modeling Performance

Independent Modeling: Cumulative Errors explode.

End-to-end Modeling: Decrease Independent Performance.

Combined Modeling: Small value of end-to-end loss (Wend-to-end = 0.1) regularizes the end-to-end error.

Numerical Results

The best model achieves results comparable with the diagnostic station accuracy.

Architecture	BPM	ICT	YAG	ICT	BPM	YAG
FeedForward	776μm	1084μm	1692μm	1106μm	1261μm	1554μm
LinacNet	198μm	254μm	541μm	618µm	719µm	913µm
ThomNet	178μm	134μm	247μm	224μm	258μm	336μm

Table: MAE of the position. The accuracy of the BPM is $\sim 100 \mu \mathrm{m}$

Architecture	BPM	ICT	YAG	ICT	BPM	YAG
FeedForward	176pC	177pC	167 _P C	91pC	91pC	91pC
LinacNet	28pC	28pC	29pC	34pC	34pC	35pC
ThomNet	8pC	9рС	9pC	8pC	8рС	8pC

Table: MAE of the charge. The accuracy of the ICT is $\sim 10 \mathrm{pC}$

Distributions

Figure: Comparison between the projection of the simulated beam (left) and predicted beam (right) on the transverse and longitudinal space.

- Surrogate Models for Particle Accelerato
 - Example of the optimization of a machine
- LinacNe
 - Physics-aware modelling
 - Neural Network for 6D distribution
 - Training Procedure
 - Results
- Conclusion

Perspectives

Results

- Reflecting the physical constraints in the neural architecture speed up the training and gives better results
- Precision of the same orders as the diagnostics installed on ThomX

Challenges

- Training of a modular model
- Performance for the optimization task to be tested

Questions?