Surrogate Models for Particle Accelerator LinacNet Conclusion
000000 000000000000 00000 [e]e]e}

Neural-Network-based Surrogate Simulator for Particle Accelerator with
High Dimensional Control Settings

Emmanuel Goutierre / Hayg Guler
H. Guler!, C. Bruni!

J. Cohen?, M. Sebag2

LLaboratoire de Physique des 2 Infinis Iréne Joliot-Curie (1JCLab)

2( aboratoire Interdisciplinaire des Sciences du Numérique (LISN)

Tuesday 28th November 2023

v . a 4
L1SNI‘H~ université  ®Cub ¢ /N z
e PARIS-SACLAY Lol @ czea—

E. Goutierre / H. Guler LinacNet Artifact workshop, Paris 2023 Tuesday 28th November 2023 1/29




Surrogate Models for Particle Accelerator LinacNet Conclusion
000000 000000000000 00000 [e]e]e}

Motivations

Surrogate models : from aggregate to 6D

Models are good for reproducing beam aggregate properties (size, emittance, Edep, ...)
aggregates could be insufficient to get all properties of a beam

by definition, full beam reconstruction gets all the beam properties

6D beam is perfect as input for a new simulation

Full 6D beam helps to better understand disturbed beam

help to better understand the beam halo

better understand collective effects
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Figure: Training of a Surrogate Model
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Why Surrogate Models of Particle Accelerator Simulator?

General motivation concerning the need for surrogate models for particle accelerators.

o Runnable in a control
room during
operations

@ ms vs. several minutes o Offline & Online

Fast Execution J Optimization J Real-time Feedback
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Example of the optimization of a machine

ThomX: A Compact Compton Source

Figure: Linac of ThomX.

ThomX Linac
@ X-ray source by Compton o Accelerate the electron beam up to 50
backscattering MeV

o Compact Accelerator (70m2)

@ In commissioning at the 1JCLab since
May 2021

Goal

Use machine learning to tackle the problem of adjusting the Linac parameters to fulfill the beam
requirements for the transfer line.
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o 15 controllable parameters

Laser position and size

Gun and Cavity phase and field
Solenoid Fields

Steerer Fields

Quadrupoles Fields

>
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Example of the optimization of a machine
Accelerator Tuning
A : Controllable Parameters BB : Hidden Parameters
@ 15 controllable parameters @ Mechanical Misalignment
Laser position and size @ Unknown initial particle distribution

Gun and Cavity phase and field
Solenoid Fields

Steerer Fields

Quadrupoles Fields

@ Slow drift of electromagnetic elements
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Example of the optimization of a machine

Accelerator Tuning

A : Controllable Parameters B : Hidden Parameters
@ 15 controllable parameters @ Mechanical Misalignment
Laser P°5iti°r_‘ and size . o Unknown initial particle distribution
Gun and Cavity phase and field . .
Solenoid Fields @ Slow drift of electromagnetic elements

Steerer Fields
Quadrupoles Fields

O : Observables

@ 17 Observables
Position and Charge at BPMs
Charge at ICTs
Position and Size at Screen
Charge at Faraday Cup
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Example of the optimization of a machine

Accelerator Tuning

A : Controllable Parameters

@ 15 controllable parameters
Laser position and size
Gun and Cavity phase and field
Solenoid Fields
Steerer Fields
Quadrupoles Fields

O : Observables

@ 17 Observables
Position and Charge at BPMs
Charge at ICTs
Position and Size at Screen
Charge at Faraday Cup
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B : Hidden Parameters
@ Mechanical Misalignment
@ Unknown initial particle distribution

@ Slow drift of electromagnetic elements

F: Objective function

@ Quality of the beam
e Function of (A, B)
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Example of the optimization of a machine

Accelerator Tuning

A : Controllable Parameters

@ 15 controllable parameters
Laser position and size
Gun and Cavity phase and field
Solenoid Fields
Steerer Fields
Quadrupoles Fields

O : Observables

@ 17 Observables
Position and Charge at BPMs
Charge at ICTs
Position and Size at Screen
Charge at Faraday Cup

Goal
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B : Hidden Parameters
@ Mechanical Misalignment
o Unknown initial particle distribution

@ Slow drift of electromagnetic elements

F: Objective function

@ Quality of the beam
o Function of (A, B)

o Optimize : find set of parameters (A) depending on hidden parameters (B) to get minimal
objective function (F) with the aid of observable(O)

o Classical way : manual tuning, heavy load on expert
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Physics-aware modelling

Multi-Layer Perceptron: A First Model

Training Curve

NSS!
FIOONY Y
PR
SN /45
S

Figure: Training Curve

Figure: MLP as a surrogate model of a Linac

Multi Layer Perceptron
o Stack all inputs and outputs
@ 10k simulations sampling A and B

@ Minimization of the L2 loss

Conclusion
[e]e]e}

E. Goutierre / H. Guler LinacNet Artifact workshop, Paris 2023 Tuesday 28th November 2023

12/29



Surrogate Models for Particle Accelerator LinacNet Conclusion
000000 O00@0000000000000 [e]e]e}

Physics-aware modelling

Physics-aware: Cutting the non-causal links

/5

X

%

Figure: LinacNet with 6 modules corresponding to 6 diagnostic stations on the Linac

LinacNet
@ Split input and output according to their position in the Linac
@ Neural Network Architecture reflecting a Linac architecture

o Each Module models one Diagnostic (could be real or virtual)
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Neural Network for 6D distribution

PointNet as a Beam Representation Network
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Figure: One module of ThomNet

ThomNet

@ Track the full distribution of particles

@ Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation” (CVPR 2017)
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Neural Network for 6D distribution

PointNet as a Beam Representation Network
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Figure: One module of ThomNet

ThomNet

@ Track the full distribution of particles

@ Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation” (CVPR 2017)
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Neural Network for 6D distribution

PointNet as a Beam Representation Network
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Figure: One module of ThomNet

ThomNet

@ Track the full distribution of particles

o Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation” (CVPR 2017)
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Neural Network for 6D distribution

PointNet as a Beam Representation Network

G 00

6o oY) )

Siamese network

o

Each particle taken individually
[© 0 0 0 o of—{Emimmwlo o 0 0O o o ooJd|co oo dlfleo X coooo0o0
[ © 0 o o [Xe) 0O O Olf—{wmmmmmia} 0 ooo|co [eNeXe)|([*Xe]} [Xe) ©@ooo000
[0 0 0o 0 o X [eXeNe); 0 oood|co oo ollco [Xe) cooo0o0o0
[© © 0o 0 o o] 0 0 0J|c o 0 0 0l|[c o [0 O 00000

[SX®) 0 0 o] Fmm—G &

Figure: One module of ThomNet

ThomNet

@ Track the full distribution of particles

o Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation” (CVPR 2017)
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Neural Network for 6D distribution

PointNet as a Beam Representation Network
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Figure: One module of ThomNet

ThomNet

@ Track the full distribution of particles
o Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation” (CVPR 2017)
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Neural Network for 6D distribution

PointNet as a Beam Representation Network

Conclusion
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Figure: One module of ThomNet

ThomNet

@ Track the full distribution of particles

@ Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and

Segmentation” (CVPR 2017)
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Neural Network for 6D distribution

PointNet as a Beam Representation Network
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Figure: One module of ThomNet

ThomNet

@ Track the full distribution of particles

@ Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation” (CVPR 2017)
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Neural Network for 6D distribution

PointNet as a Beam Representation Network
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Figure: One module of ThomNet

ThomNet

@ Track the full distribution of particles

o Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and

Segmentation” (CVPR 2017)

E. Goutierre / H. Guler LinacNet Artifact workshop, Paris 2023

Tuesday 28th November 2023

15/29



Surrogate Models for Particle Accelerator LinacNet Conclusion
000000 O0000@00000000000 [e]e]e}
Neural Network for 6D distribution

PointNet as a Beam Representation Network
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Figure: One module of ThomNet

ThomNet

@ Track the full distribution of particles

@ Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation” (CVPR 2017)
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Figure: One module of ThomNet

ThomNet
@ Track the full distribution of particles

o Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and

Segmentation” (CVPR 2017)
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ThomNet

@ Track the full distribution of particles

Figure: One module of ThomNet

o Inspired by Qi et al., “PointNet: Deep Learning on Point Sets for 3D Classification and

Segmentation” (CVPR 2017)
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Accelerator as a sequence of modules

Pucameless (8) Ducameless ( 1)
V \Y
Module Module

. A ‘ 3
-y

gmél\o}\'ics (»L) &aév\es\'ics (7.)

Pacamelers ( N\
\%

' H.,c'lv.ku
\J}/

&manoshcs (M)

@ We divide our accelerator in a sequence of sub-parts
o Each part could contain controls / measurements (real or virtual)
@ Learning a full machine could be complicated, costly

Good for

@ transfer to a real machine

o optimize : could be done by part / module

@ Retrain locally due to drift in the data

o Address larger machines

Conclusion
[e]e]e}
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Training Procedure

Sequential Network as a Multi-Objective Optimization

o General question in machine learning

@ how to learn a sequence of models, tasks ?

o Could be heterogeneous : classification, regression, etc

o Conflicting between modules could deteriorate the global loss

o Independent Errors : Err; i1 (dj, diy1,a0) = I (fi i1 (di, a;6) , dit1)
e End-to-End Errors : Errg j (do, d;,a;0) =/ (fo,,- (do, a; 0), d,-)

Scalarization of the Multi-Objective Loss

N
Lo (d,2;0) = wi_y,iErri_y i (di_1,d;, a;0) + wo i Erro j (do, d;, a; 0)
im1
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Training Procedure

One example of learning a sequence : MGDA!

@ Dynamic weighting of the module that moderates conflicting loss between modules
N
w* = argmin L, w >0, ZW;_L,'-FW()J =1
w i=
Properties

o Common descent direction to all objectives

o Stop when encountering a Pareto-invariant point

Sener and Koltun, “Multi-Task Learning as Multi-Objective Optimization”.
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Memory Constraints

+ GPU A100 80 GB
+ Max Available Batch size

+ One segment: 200
+ All segments: 16

Training Time
Limitation to:
+ 20 h for one segment
+ 100 h for all segments

Method

« Extensive hyperparameter

search on the first segment.

« Apply these parameters to all

segments.

+ Only Multi-Objective Strategy

Study on the whole accelerator.



o Aggregation methods compared

@ Max works a bit better than mean
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Particle Independent Errors for Each Segment Particle End-to-End Modeling Performance
Independent Modeling: Cumulative Errors explode.
End-to-end Modeling: Decrease Independent Performance.

Combined Modeling: Small value of end-to-end loss (Weng-to-end = 0.1) regularizes the end-to-end error.
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Results

000
Numerical Results

The best model achieves results comparable with the diagnostic station accuracy.

Architectu

BPM ICT

YAG ICT BPM YAG

FeedForward 776pm | 1084pm | 1692pm | 1106pm | 1261um | 1554pum

LinacNet 198;1m 254pm 541um 618um 719um 913um

ThomNet

178 um 134p0m 247 pem

224p0m 258 0m 336pm

Table: MAE of the position. The accuracy of the BPM is ~ 100pm

Architecture

BPM ICT YAG ICT

176pC 177pC 167pC 91pC 91pC 91pC

LinacNet

28pC 28pC 29pC 34pC 34pC 35pC

ThomNet

8pC 9pC 9pC 8pC

8pC 8pC

Table: MAE of the charge. The accuracy of the ICT is ~ 10pC
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Results
Distributions
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Figure: Comparison between the projection of the simulated beam (left) and predicted beam (right) on the

transverse and longitudinal space.
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Perspectives

Results

o Reflecting the physical constraints in the neural architecture speed up the training and gives
better results

@ Precision of the same orders as the diagnostics installed on ThomX

Challenges
@ Training of a modular model

@ Performance for the optimization task to be tested
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Questions?
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