

PhD PROJECT DISCUSSION

Sofia Giappichini

ALPs

- Higgs CP from $H \rightarrow \tau \tau$
- (Tau reconstruction)

ALPs

- Feebly-interacting particles
- DM candidate
- Solution to the strong CP and/or hierarchy problems
- FCC-ee clean environment and large integrated luminosities will render it very sensitive to EW-coupled ALPs
- Decay into $\ell^+\ell^-$, $\overline{q}q$, $\gamma\gamma$, gg, $\pi\pi\pi$, with at least dim-5 effective Lagrangian, from dim-6 to include H coupling

ALPs at FCC-ee

- $a \rightarrow \ell^+ \ell^-$, $a \rightarrow \gamma \gamma$ from $H \rightarrow aa$, Ha, Za projected sensitivity
- $Z \rightarrow \gamma(a \rightarrow \gamma\gamma)$ snowmass 2022, gen level
- $\gamma \gamma \rightarrow a \rightarrow \gamma \gamma$ photon fusion, IDEA reco, different ecm, prompt and DV, only photon coupling
- $\overline{f}f(a \to \gamma\gamma)$, $f = e, \mu, \nu, \sqrt{s} = 240 \text{ GeV}$ bounds on photon and Z couplings

ALPs at LHC

- $\overline{t}t(a \rightarrow \mu\mu)$ <u>LLP</u>, only top coupling, no detector sim
- $\overline{t}t(a \rightarrow ee/\mu\mu)$ prompt from <u>CMS</u> and ATLAS too
- $t \rightarrow q(a \rightarrow \overline{q}q)$ decay in HCAL, flavor changing decay (based on ATLAS?)
- $a \rightarrow \gamma \gamma$ from $Pb Pb, pp, VBF, H \rightarrow aa, H \rightarrow Za$ (review of ATLAS/CMS)
- $pp \rightarrow a \rightarrow ZH/ZZ$ <u>CMS</u>, non-resonant coupling to bosons in EFT approach
- <u>VBS</u> with ALPs produced in non-resonant coupling to ZZ, WW and Z_Y, reinterpretation of LHC data in SMEFT of dim-5

ALPs POSSIBILITIES

- Consider all SMEFT relevant operators (and total BR) instead of single ones for a more complete approach
- Lepton (tied to τ reconstruction) and quark channels haven't been explored at FCC-ee
- Lepton channel is less excluded (see <u>projected sensitivity</u>)
- $H \rightarrow Za, H \rightarrow aa, Z \rightarrow a\gamma$ and different mass-coupling hypotheses to probe a large portion of space

HIGGS CP

- Higgs is CP-even in SM, CP-odd Higgs is excluded at $\sim 3\sigma$ (CMS+ATLAS)
- Direct approach: CP-odd observables using angular distributions
- Indirect approach: effect of CP-odd interactions on CP-even observables
- CPV with massive vector boson can only be induced at loop level in a generic BSM theory and is expected to be small
- CPV with fermions can occur unsuppressed making it especially interesting from a phenomenological point of view
- CPV in the Higgs sector might have implications for weak scale baryogenesis in several BSM scenarios

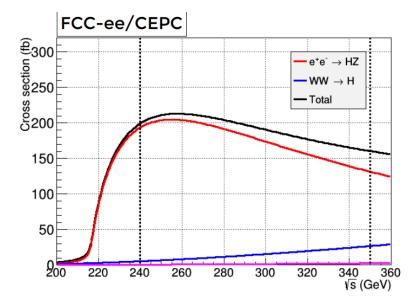
HIGGS CP at FCC-ee

• <u>CP HZZ</u>, $Z(\rightarrow \ell^+ \ell^-)H(\rightarrow b^- b)$ studying angular observables from parameterised amplitudes, CP-even, CP-odd, CP-mixed (50%)

■ <u>ILC</u> $Z(\rightarrow e^+e^-, \mu^+\mu^-, \bar{u}u, \bar{d}d, \bar{s}s)H(\rightarrow \tau^+\tau^-)$ with most decay modes of τ , CP-odd, CP-even, CP-mixed (50%)

• <u>CEPC</u> $Z(\rightarrow e^+e^-, \mu^+\mu^-)H(\rightarrow gg/b^-b/c^-c)$ with SMEFT, only CP-odd paramters

HIGGS CP at LHC


- <u>CMS</u> and <u>ATLAS</u> $\overline{t}tH, H \rightarrow \gamma\gamma$, also with <u>machine learning</u>
- CMS $H \rightarrow \tau \tau$ with κ , τ decays hadronically, semileptonic or leptonic, from VBF, ggH, VH and <u>ttH, tH</u>
- <u>CMS</u> $H \rightarrow \tau \tau$ with κ and anomalous couplings related to two SMEFT operators from VBF, ggH, VH

- ATLAS $H \rightarrow \tau \tau$ with SMEFT, τ decays leptonically or semi, from VBF
- ATLAS $H \rightarrow \tau \tau$ with κ , most τ decay modes

HIGGS CP POSSIBILITIES

- For FCC-ee it seems like there is a lot of room for exploration
- $H \rightarrow \tau \tau$ is seen as a very promising channel, there are a few options in terms of ecm and production channel (excl. tH, ttH), τ reconstruction
- If studying it from an EFT (SMEFT, HEFT?) perspective with multiple operators then it would also be interesting in CMS
- Different assumptions by selecting relevant operators: CP-even, CP-odd, CP-mix

TAU RECONSTRUCTION

- At FCC-ee DV from tau decays can be specifically searched for and used for tau reconstruction
- Cleaner environment than LHC, especially for leptonic decays
- Hadronic tau reconstruction from jet tagging algorithms (tested on CLIC)
- Study on tau <u>polarisation</u> in $e^+e^- \rightarrow \tau^+\tau^-$ (gen level)