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Introduction



Approach

• Study the reconstruction and tagging of Z → ττ events at FCC-ee

• Two different approaches:

• Exclusive reconstruction of the Z → ττ decay

• NN-based tagging of Z → ττ events

• exclusive approach possible due to low background at FCC-ee
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Dataset

• Simulated Z → xx events at FCC-ee with x = τ, u, d , s, c , b

• Ecm = 91GeV

• jet clustering and particle flow reconstruction

⇒ exclusive and inclusive jets

• O(180) variables per event

• event variables: nµ, ne ,Emiss, . . .

• jet variables: pT , η, ϕ,m, . . .

• pfcandidate variables: pT , η, ϕ,m, type, . . .
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Current Status

What have I achieved in the current time frame?

• Focus on machine learning out of preference

• Building framework for data analysis
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Data Analysis Framework

• Python-based framework for data analysis

• loading of ROOT files using uproot

• data preprocessing and feature engineering

• event and jet unpacking (arrays and subarrays in ROOT)

• limit of variables to be used

• normalization of variables

• switched from pandas to numpy/awkward for performance reasons

• multi-threading for data preprocessing

• output as pytorch.Tensor

5



Neural Network

• PyTorch-based neural network

• switch from regression to classification after proof of concept

• binary classification of Z → xx events

Figure 1: Neural Network Architecture for huge number of input variables,

Nvis =
√
Nreal
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Results

• Proof of concept for data analysis framework

• Proof of concept for neural network

• First results for classification of Z → ττ events
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Training Loss
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Figure 2: Training loss for neural network
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Performance

Table 1: Results for classification of Z → xx events

Score Repr. Testset Wrong per Million

Z → ττ 0.997314 0.783945 2685.765443

Z → ss 0.955237 0.044763 44762.757386

Z → bb1 NaN 0.000000 NaN

Z → cc1 NaN 0.000000 NaN

Z → ud 0.954939 0.171292 45061.175768

1bug in dataset evaluation leads to 0 events in testset
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Performance

Figure 3: ROC curve for classification of Z → xx events
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Results New Model

New Model - State April 25, 2024

• removal of event variables from input

• evaluation of most important features

• log Erel of pfcandidates 0, 1, 4

• p of first pfcandidates

• Ejet ,

• nCHad in jet

⇒ successful classification likely
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Current Problems

• Memory limitations for dataset size (currently O(6 GB to 60GB)

files)

⇒ reduction of dataset size: python vs ROOT

• Selection of input parameters for neural network

⇒ number of input parameters per event and jet

• Optimization of neural network architecture

⇒ deducing input parameters from other parameters

(e.g. jet mass from jet momentum)
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Outlook

• Decision for either exclusive reconstruction or NN-based tagging

• Optimization of neural network architecture

• Official start of thesis
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