$Z \rightarrow \tau \tau$ Reconstruction and Tagging at FCC-ee

Lars Bogner KIT - Institute of Experimental Particle Physics April 25, 2024

Overview

Introduction

Approach

Dataset

Current Status

Data Analysis Framework

Neural Network

Results

Outlook

Introduction

- Study the reconstruction and tagging of $Z \to \tau \tau$ events at FCC-ee
- Two different approaches:
 - Exclusive reconstruction of the Z
 ightarrow au au decay
 - NN-based tagging of $Z \rightarrow \tau \tau$ events
- exclusive approach possible due to low background at FCC-ee

- Simulated $Z \rightarrow xx$ events at FCC-ee with $x = \tau, u, d, s, c, b$
- $E_{\rm cm} = 91 \, {\rm GeV}$
- jet clustering and particle flow reconstruction
 ⇒ exclusive and inclusive jets
- $\mathcal{O}(180)$ variables per event
 - event variables: $n_{\mu}, n_{e}, E_{\text{miss}}, \dots$
 - jet variables: $p_T, \eta, \phi, m, \ldots$
 - pfcandidate variables: $p_T, \eta, \phi, m, type, \ldots$

Current Status

What have I achieved in the current time frame?

- Focus on machine learning out of preference
- Building framework for data analysis

- Python-based framework for data analysis
- loading of ROOT files using uproot
- data preprocessing and feature engineering
 - event and jet unpacking (arrays and subarrays in ROOT)
 - limit of variables to be used
 - normalization of variables
- switched from pandas to numpy/awkward for performance reasons
- multi-threading for data preprocessing
- output as pytorch.Tensor

Neural Network

- PyTorch-based neural network
- switch from regression to classification after proof of concept
- binary classification of $Z \rightarrow xx$ events

Figure 1: Neural Network Architecture for huge number of input variables, $N_{vis} = \sqrt{N_{real}}$

- Proof of concept for data analysis framework
- Proof of concept for neural network
- First results for classification of $Z \rightarrow \tau \tau$ events

Figure 2: Training loss for neural network

Table 1: Results for classification of $Z \rightarrow xx$ events

	Score	Repr. Testset	Wrong per Million
$Z \to \tau \tau$	0.997314	0.783945	2685.765443
$Z \rightarrow ss$	0.955237	0.044763	44762.757386
$Z ightarrow bb^1$	NaN	0.000000	NaN
$Z ightarrow cc^1$	NaN	0.000000	NaN
Z ightarrow ud	0.954939	0.171292	45061.175768

 $^{^{1}\}mathrm{bug}$ in dataset evaluation leads to 0 events in testset

Performance

Figure 3: ROC curve for classification of $Z \rightarrow xx$ events

New Model - State April 25, 2024

- removal of event variables from input
- evaluation of most important features
 - $\log E_{rel}$ of pfcandidates 0, 1, 4
 - p of first pfcandidates
 - Ejet,
 - n_{CHad} in jet

 \Rightarrow successful classification likely

Outlook

- Memory limitations for dataset size (currently $\mathcal{O}(6\,\text{GB}$ to $60\,\text{GB})$ files)

 \Rightarrow reduction of dataset size: python vs ROOT

- Selection of input parameters for neural network
 ⇒ number of input parameters per event and jet
- Optimization of neural network architecture
 ⇒ deducing input parameters from other parameters
 (e.g. jet mass from jet momentum)

- Decision for either exclusive reconstruction or NN-based tagging
- Optimization of neural network architecture
- Official start of thesis