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Scientific aim

A new framework for 

“particle transport with stochastic and continuous processes”, 

as a stable and solid working horse for astroparticle physics for the next decades,

making most efficient use of expensive and limited scientific and computational 

resources, 

supporting experimental work, as well as physics advances. 

2



Outline, General brief overview

What is needed; important improvements; main considerations; biggest challenges

● We discuss a new project:

every relevant line of code will have to be typed from scratch. 

● Every decision counts, and can be extremely relevant for applications. 

● Build on experience from CORSIKA: 
○ what has worked, 

○ what is important, and 

○ where are the existing limitations. 
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Description of project
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CORSIKA status

The success of CORSIKA since almost 30 years is one of the foundations 
of astroparticle physics as it is today.

The biggests contribution of CORSIKA was to serve as a common 
reference frame for cosmic ray related physics.

Essentially all experiments are using it.
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Experimental landscape (partly)
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CORSIKA evolution

● CORSIKA started as dedicated tool for KASCADE here at KIT.
● It was rapidly adapted to other experimental environments and 

requirements and has continued to be grow since then.
→ CHERENKOV, THINNING, CURVED, SLANT, CONEX, PARALLEL, ... 

● FORTRAN77 with extensive use of pre-compiler logic and a lot of 
highly efficient explicitly coded optimization. 

● Significant complexity of code. Very hard to further extend, understand, 
maintain and debug.
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Limitations of CORSIKA so far

● Interaction medium is air. 

● Processes, like Radio emission, cannot influence the main simulation loop to 

e.g. change the step lengths, etc. 

● Every process must be able affect the tracking/step-size, 

● The system of “processes” and “interaction models” is very rigid, 

● Missing physics, e.g. kaon oscillations, and quantum numbers: helicity, spins…

● Much more flexible output options, single-file tier, 

● Much more powerful HISTORY options,

● No upward going Cherenkov photons. 
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Particle cascade process
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Main challenges
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Electron gamma cascades

The electron gamma cascade is maybe the most important part of the shower

● We assume we can model it accurately
● It needs most of the computation resources
● It is directly responsible for most: Cherenov, Radio emission

Currently: 
customized EGS4 code, there is special physics
in CORSIKA missing in essentially all other 
similar projects, e.g. LPM effect. 
However, basically impossible to port into a new C++ project. 
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Possible solution

1. Start with CONEX electron-gamma code (also EGS4)

2. Link to GEANT4 processes

3. Use other version of EGS (EGCnrc)

4. Full re-implementation of physics

5. Other solution
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Random numbers

Random number generation in an inherently multi-core and parallel environment 
while ensuring the full reproducibility of simulations.

We need to be clear about what is really needed and required. 

This can quickly become a very significant complication. 
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Full and transparent integration of cascade-equations, full transport, and 
thinning methods

● Plan:
Seamless combination of different computing methods in user-defined 
phase-space of the cascades. 

● Where are the limits?
How can dE/dX, Cherenkov, lateral structure, radio production etc. be 
simulated in cascade equation?

This might be one of the most relevant questions to answer. The impact on 
accuracy and computational resource needs can be enormous. 
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GPU optimization

● What the calculations best ported to GPU?

● How do we best keep code that runs both on CPU and GPU 100% 

synchronized?

● What are most intelligent ways to transport data between CPU and GPU?

● What type of GPUs to support? 

15



Supercomputer applications

Which technology for parallel running: MPI?

Combine parallel and GPU for maximum speed?

What are the requirements from the community, and how to serve them:

● Ultra-high energy showers, can run months on a single CPU

● Ultra-high number of small energy showers for TeV gamma-ray and neutrino 

background calculations. Typically very small number of particles on ground. 
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Some details
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Programming considerations

Provide assistance to avoid many simple errors, mistakes and repetition of trivial 
code. 

Physicists should never be forced to know in what values of parameters in a 
specific “reference frame”, they work with variables explicitly in the correct frame:

● Coordinate systems
● Lorentz transformation
● Particle IDs
● Physical units

For scientists for good coding practice, and sufficient documentation. 
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Framework

There is a core part, where all calculations are strictly done using only  the 
provided infrastructure of the framework,

there is also an external part, where calculations are done fully outside of the 
scope of the framework,

→ thus, there is a frontier, depending on the boundary between core and extern 
code, where all conventions must be carefully adapted and converted. 
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More realistic picture
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Particle production and multiplicative cascades

In a cascading process at ultra-high energy the storage and management of 
particles is one of the most important tasks. 

Consider an electromagnetic cascade, with a typical 1→ 2 splitting at each vertex. 

There is memory for 50 particles in the program. 

You can keep particles from 2n=50, n=5 steps in memory

But if you at every collision process the lowest energy particle first, you very 
quickly come to the level where particles are removed from the cascade. 

In this example you can simulate 50/2 = 25 steps with the same resources. 

21



Some notes on the stack

The stack is where particle data is stored. 

We need no particle object class, just a reference on the stack.

Stack can be anything internally (fortran, std::vector, std::map, file, combination of 
everything), only the interface must be well defined. 

For physicist and users this must look like: 
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for (auto particle : stack) {

   particle.GetEnergy(showerFrame);

   ...

}



The main program

Task: empty the stack → then finished 
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stack.add(primaryParticle);

while (!stack.Empty()) {

  while (!stack.Empty()) {

    auto particle = stack.Get();

    Step(particle);

  }

  cascadeEquations.Solve();

}



Tracking through medium, and processes

● Continuous processes occur on a scale much below the 
transport step-length, e.g. ionization, multiple scattering, radio 
emission, Cherenkov production, and thus an effective 
treatment can be used.

● Discrete processes typically lead to the disappearance of a 
particle and to production of new particles (typically for, but not 
limited to, collisions or decays).
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One simulation step

1. Determine step length
2. To transport
3. Apply all continuous processes
4. Apply one discrete process

Step(auto particle) {
  auto stepLength = MinimalStepLength(tracking, continuousProcesses, stochasticProcesses);
  auto trajectory = tracking.Propagate(particle, stepLength)
  for (auto cp : continuousProcesses) {
    cp.Propagate(particle, trajectory, stepLength);
  }
  // randomly select ONE or NONE stachastic process
  if (discreteProcess dp = SelectStochasticProcess(stepLength)) { 
    dp.Interact(particle);
    }
}
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Atmosphere → Environment

We need to supply a lot more information on the environment compared to before. 
The environment must be a plug-and-play object, where functionality can be 
provided for whatever is needed for the scientific application. The interface could 
include that, but this is not exclusive:

Environment::GetVolumeId(point)
Environment::GetVolumeBoundary(trajectory)
Environment::GetTargetParticle(point)
Environment::GetDensity(point)
Environment::GetIntegratedDensity(trajectory)
Environment::GetRefractiveIndex(point)
Environment::GetTemperature(point)
Environment::GetHumidity(point)
Environment::GetMagneticField(point)
Environment::GetElectricField(point)
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All of this is highly relevant for 
computing speed. The data from the 
environment is typically needed in 
each single step. 

Question: what is the consequence 
and impact on GPU code? 



Geometry example

Probably start with sphere-only geometry. Add later what is needed in addition.
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Sphere, 
atmosphere

Sphere,
water

Sphere,
mountain?



Summary

CORSIKA is a very successful program, very versatile, and extremely widely used 
for 

● Planning and design of science cases and experiments,
● Event simulation, reconstruction and data analysis,
● Physics interpretation. 

Increasing complexity requires major changes in CORSIKA to keep it functional for 
the next decades. 

Improvements on: modularity, accuracy, flexibility, and emphasis on efficiency. 
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