

cherenkov telescope array

CORSIKA & CTA

Next-generation CORSIKA workshop - Karlsruhe - 2018, June 25th

The Cherenkov Telescope Array

- the upcoming gamma-ray observatory at energies from 20 GeV to beyond 300 TeV
- will be the largest ground-based gamma-ray detection observatory in the world, with more than 100 telescopes in the northern and southern hemispheres
- will have unprecedented accuracy

 -> reducing the systematic uncertainties will be key for the success
 of CTA
- **open** to the world-wide astronomical and particle physics communities

-> promise of continuous high quality data products for many years

Imaging Atmospheric Cherenkov Telescopes

Operation: - mostly simulation of primary gamma rays

image of shower axis

-θ2

Preparation & Pre-construction phase:

-03

θ

- gamma rays, protons, electrons

+some special cases which might drive the accuracy needed (e.g. direct Cherenkov light) 3

CTA Telescopes

Mid-size telescope 12 m diameter 90 GeV to 10 TeV large field of view precision instrument

Large-size telescope 23 m diameter >20 GeV rapid slewing (<50s)

Small-size telescope 4-5 m diameter >5 TeV large field of view large collection area

CTA Southern Site Paranal, Chile 4 large size telescopes 25 mid-size telescopes 70 small size telescopes

CTA Northern Site La Palma Island

4 large-size telescopes 15 mid-size telescopes

The Cherenkov Telescope Array

What will be different with CTA?

- high-multiplicity "inside events"
- large telescope distances (beyond the light pool edge)

 small pixelation and fast timing (0.07-0.25 deg; up to GHz sampling)

Systematic Uncertainty Budget

Requirement for systematic uncertainties on energy scale: <10%

	currently achived	goal for CTA	
Simulation codes	5 %	1-2 %	
Simplification in Detector MC	2 %	2 %	
Cherenkov light production	5 %	2 %	mainly molecular profile
Ozone absorption	3 %	1 %	Potential vorticity, spectrometer
Molecular extinction	2 %	1 %	Radio sondes and GDAS
Cirrus layer extinction	5-10%	1-2%	Raman LIDARS and FRAM
Boundary layer extinction	5-10%	1-2%	Raman LIDARS and FRAM
Scattered Cherenkov light	<1%	<2%	

CTA Simulation Production Chain

- typical production chain with air-shower + telescope simulation chain
- run-wise Monte Carlo production
 - simulate (sub-)array of telescopes that are
 tracking a sky position
 - consider e.g. broken pixels, calibration, night-sky background,
 atmospheric model for this run

Cherenkov emission in CORSIKA

- original Cherenkov emission implemented for non-imaging arrays (rectangular detector setup on a horizontal plane)
- extension to CORSIKA: IACT/ATMO package ('bernloehr package')
 - non-rectangular array layouts and IACT geometry
 - use of tabulated atmospheric profiles
 - atmospheric refraction
 - own data format
- for the new CORSIKA version: coordinate the needs of the different instrumental group and obtain one single Cherenkov module?
 - aim also for better integration of IACT module in CORSIKA

See Johan's / Luisa's presentation for the relevant routines

Unification of all Cherenkov modules??

Curved Atmosphere

hadronic showers: differences in shower development

- more realistic assumption on geomagnetic field (~roughly)
- e.g. shower at large zenith angle extents over 10-100 km: geomagnetic field changes both in direction and intensity +change in height (effect of a few percent only, but possibly relevant in future)

Atmospheres in EGS4

- EGS part in CORSIKA (and output data) hardcoded with five atmospheric layers (4 exponential, 1 linear density gradient).
- Simultaneously fitting density and thickness of tabulated atmosphere, with up to a few percent differences for relevant altitudes ...
- percentage-scale impact on energy scale?

Probably the most pressing issue for CTA: affects already now the systematic uncertainty

Particle transport - step sizes

- high angular resolution of IACTs (smallest pixel size: 0.06 deg) maximum step sizes in CORSIKA with IACT option are smaller than without IACT
- track segments can have lengths up to several km at high altitudes
- maximum bending in geomagnetic field between two track segments must be below pixel size
- multiple scattering angle between track segments must be well below pixel size
- limits are hard-coded
 - need to be reconsidered...

- CORSIKA is one of the core software tools essential for the success of CTA
- Essentials, given the lifetime of CTA (30 years+):
 - code quality, documentation, and maintainability
- CORSIKA is a key tool for CTA long term support from CTA Consortium and/or Observatory for maintenance and development can be expected

Fluorescence light

Morcuende et al 2018