cherenkov
C a telescope
array

Preliminary work on corsika

optimization =
L. Arrabito?, J. Bregeon?,
P. Langlois?, D. Parello?, G. Revy?
ILUPM CNRS-IN2P3 France
2DALI UPVD-LIRMM France

Next-generation CORSIKA workshop - Karlsruhe - 2018, June 25t

Plan @

» Motivations for corsika optimization
« Corsika profiling

« Compiler optimization tests

* First manual optimizations

* Next steps and conclusions

Motivations to improve corsika Cta
performances

MC simulations in CTA are the most CPU consuming task
— 70% of CPU spent in corsika (shower development)
— 30% of CPU spent in telescope simulation
Massive MC simulations run on the grid since 7 years to
assess CTA design

During CTA operations MC simulations will be periodically run
to calculate the Instrument Response Functions

Running jobs by site since Jan. 2018 8000 jobs
b

e 6000-8000 concurrent jobs
e >125 M HS06 CPU hours
since Jan. 2018

Profiling with Linux perf Cta

» Profiler tool for Linux based systems

— Used the sampling method (perf record/report), based on the ‘cycles’ event,
and the call graph option

« Using ‘standard’ input parameters as in current productions
— corsika 6.990 and IACT/ATMO 1.51
— Qgs2 interaction model
— PRIMARY gamma point source
— THETAP 20 and PHIP 180
— ERANGE 3.0 330E3 and ESLOPE -2.0
— CSCAT 10 2000e2 0.
— NSHOW 10000
— External Atmosphere
* Running on a dedicated server
— x86_64
— Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
— CentOS Linux release 7.4.1708 (Core)
— Compiled with: -O2 —funroll-loops

Profiling results ‘ Cta

Linux perf + FlameGraph

« 90% of CPU in CERENK
subroutine and below
— Cherenkov photon production
— Part of corsika ‘core’

50% of CPU in raybnd function
and below

— Propagation of cherenkov
photon in the atmosphere with
refraction correction

— Part of IACT/atmo package

Flame Graph

« Compatible results obtained with different profiling tools

— https://poormansprofiler.org/ (based on gdb)
— valgrind (by K. Bernloehr) 5

Profiling results ‘ Cta

« Zoom on raybnd (50% CPU)

asin/sincos exp binary search

S\ L]

__c€o.. _sin_avx | _GI__exp
(sincos T refidx . [FOI—
« Most of the CPU spent in mathematical functions and
atmospheric/refraction profile interpolation

— 35% exp (used for atmospheric profile interpolation)

— 35% sincos/asin

— 20% binary search for refraction tables interpolation
« Very frequently called, once per photon bunch

— About 160k photon bunches per shower (in our tests)
* Photon bunches are treated independently

— Possible vectorization?
« Choose to start optimizing the raybnd function

Optimization strategy ‘ Cta

« Test automatic optimizations by compiler
— We did not expect significant gains

Compiler optimization tests Cta

* Preparatory work
— Reorganise corsika/sim_telarray packaging (D. Parello)

— Allowing to easily test different compilation options and code
transformations

» Combine different compilation options
— Standard options:
+ -01,-02,-03
— Loop optimizations options:
 -ftree-loop-if-convert -ftree-loop-distribution -ftree-loop-distribute-
patterns -ftree-loop-im -ftree-vectorize -funroll-loops -funroll-all-
loops -floop-nest-optimize
— Arithmetics expression optimization (it may affect numerical results):
» -ffast-math
— Other options
* -mavx, -mavx2, -flto

Compiler optimization tests ‘ Cta

* Running conditions
— Same as for profiling

— Using keep-seeds option for random number generation to obtain
reproductible runs

— Run duration: about 8 minutes
— Running on a dedicated server
« Performances compared with a reference version compiled
with ‘standard’ options
— -02 —funroll-loops
« Simple performance measurements with ‘perf stat’: number of
cycles, number of instructions, elapsed time, etc.
« Checking result reproducibility

— Using a dedicated program to print the coordinates of first 10
photons of each bunch

tests

First results of compiler optimizations (Cta

« 3072 option combinations tested
— No speed-up obtained beyond a factor 1.06
« Using ffast-math impacts numerical results (as expected)

— Found that small differences in numerical results may induce
different calls to random number generators leading to very
different final results

10

Optimization strategy ‘ Cta

* Apply manual transformations
— At algorithmic level
* e.g. Testing different atmospheric interpolation schemes

11

Atmospheric profiles and interpolation Cta

Generation and propagation of Cherenkov photons require a precise
description of the atmosphere in terms of density, thickness,
refraction index

The atmosphere is built from about 55 layers, and then interpolations
are used to get precise values at various altitudes

35% of CPU time in raybnd spent in computing linear interpolation to
evaluate log(density), log(thickness), log(refidx) at various altitudes
— Implies calls to exp to obtain density, thickness, refraction index values

density profile log(density) profile

0.0012 A

+
_7.5 -
+
0.0010 4
+ —10.0 A
+ +
+++
*+

0.0008 1 4+ ~12.5 -

T _ J
2 0.0006 + £ 15.0

=17.5 A
0.0004 -
—20.0 A
0.0002 A

A
A
+
h
0.0000 A MWH—&—H ++++++++++++++ 25.0 1

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Altitude (km) Altitude (km)

—22.5 1

12

Current interpolation schemes ‘ Cta

« Standard interpolation

— It makes use of binary search algorithm to find the the 2 closest
points in the look-up table

* Fast interpolation
— Enabled by default

— Use pre-calculated fine-grained tables with equidistant steps in
altitude

* No need anymore of binary search to find the 2 closest points
— Implemented for atmospheric tables but not for refraction tables

13

Interpolation schemes Cta

Comparing the 2 schemes (standard and fast)
— Fast interpolation gives a speed-up of 1.15

— Small differences found looking at the corsika output (photon
coordinates)

* X, Yy at micron level
* Arrival time at < 0.1 ps level
* No angular differences
« Started the extension of fast interpolation to refraction tables
— No significant gain for the moment (though very preliminary)
« We've confirmed that interpolation algorithm has an impact on
performances
« Other algorithms may be implemented in future (quadratic, cubic-
splines)
— Will allow to avoid exp calls
— Accuracy of interpolation results need to be carefully checked

14

Optimization strategy

* Apply manual transformations

— Code refactoring
— Exploiting the micro-architecture capabilities
* Apply vectorization to the raybnd function to treat multiple
bunches at once
» Apply the vectorization at the mathematical function level (using
dedicated libraries)

+ Want to obtain identical numerical results with respect to a
reference version

15

First manual optimization ‘ Cta

* In raybnd function (by DP v_opt001)

* Observation of redundant calls to ‘binary search’ function for
atmospheric and refraction tables interpolation

« Simple code transformation to eliminate redundant calls

— Speed-up of 1.09
— No differences in final bunches coordinates

— Bonus
» Expose vectorization possibilities for exp calls

16

Second manual optimization ‘ Cta

Using a library vectorizing the most common mathematical
functions (exp, log, sin, cos, etc.) v_opt002

— https://hal.archives-ouvertes.fr/hal-01511131/document
— Announced speed-up of 280% for exp

« Starting from version v_opt001
— Replace in raybnd 3 exp calls to 1 vector exp call

xrhofx = exp(p_log_rho[ipl-1]*(1.-rpl) + p_log_rho[ipllxrpl);
xthickx = exp(p_log_thick[ip1-1]x(1.-rpl) + p_log_thick[ipllxrpl);
xrefidx = 1l.+exp(p_log_nl[ip1-1]*(1.-rpl) + p_log_nl[ipllxrpl);

« Speed-up of 1.16
 No differences in final bunches coordinates

« Similar results obtained with vector exp developed by G. Revy
— Version with simple precision

17

Start implementing vectorization

2

Testing different libraries for an easier vectorization on different
architectures

— bSIMD

» https://developer.numscale.com/bsimd/documentation/
v1.17.6.0/

— UME (Unified Multicore Environment)
 https://gain-performance.com/ume/

Both require C++ compiler and don’t support vectorized

mathematical functions

First attempt vectorizing ‘binary search’ function using UME
— Atmospheric tables are relatively small (e.g. 55 points)

— Avoid binary search and simply group table elements by 4 or 8 to
perform comparisons with the searched value

— No significant speed-up observed (using a different algorithm
though)

18

Conclusions

cta

Preliminary work started for corsika optimization in collaboration
with computer scientists (LIRMM/UPVD)
— Focusing on photon propagation in the atmosphere
— 1.16 speed-up already obtained with simple code transformation and
limited application of vectorized mathematical libraries
Next steps
— Extend the vectorization in raybnd to other calculations
— Start the work on precision reduction
— The goal is to integrate the coming optimizations in the new software
framework
General remarks

— Correct handling of the atmosphere is critical (spherical atmosphere,
number of layers, interpolations...): shall be central to the new version

— Automated tests to check and compare simulation output is highly
required for fast and secured development

19

BACKUP

Interpolation in raybnd Cta

* In raybnd (for non vertical paths)
— 3 fast interpolations (calls to thickx_, refidx_, rhofx_)
* Interpolation of atmospheric tables
» Evaluate thickness, refraction index and density at the emission

altitude
» Also other calls directly from cerenk

— 3 standard interpolations with binary search (calls to rpol)

* Interpolation of refraction tables
» Evaluate horizontal displacement and time offset for a given

density or altitude
» Fast Interpolation not implemented for refraction tables

« Comparing the 2 schemes (standard and fast)

— Fast interpolation gives a speed-up of 1.15
— Small differences found looking at the corsika output (see next slide)

— Started the extension of fast interpolation to other tables but no
significant gain obtained for the moment

21

Interpolation schemes Cta

« Small differences found in bunch coordinates (standard vs fast
interpolation)

— X, y at micron level
— arrival time at < 0.1 ps level
— no angular differences

140 3.0 1

dx dy E dt
100 A
2.0
6
80 1
151
60 4 4
1.0 4
40
2
N 05 "
0- 0.0 - 0 7 I

-2 0 2 4 6 -20 -15 -10 =05 00 0.5 1.0 1.5 2.0 -0.000100 -0.000075 -0.000050 -0.000025 0000000 0.000025 0.000050 0.000075 0.000100
dx (micron) dy (micron) dtime (ns)

 Problem of the validation of new code versions
— Benchmark definition
— Acceptable deviations from reference version

22

