Faster Simulations in CORSIKA

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für KernPhysik, Karlsruhe, Germany

Next Generation CORSIKA workshop, Karlsruhe, Germany June the 25th 2018

Limitations in Air Shower Simulations

Analysis based on air shower simulations affected by 2 main problems :

limited statistic due to : $\frac{1}{2}$

same problem for high statistic OR high energy

uncertainties due to hadronic interactions

another topic !

Current Solutions in CORSIKA

Most commonly used : thinning

- \rightarrow number of particles reduced by introducing weight
- \rightarrow after each interaction only one particle kept
	- **►** weight to conserve energy (not particle number)
- \rightarrow introduce artificial fluctuations
	- \rightarrow particles with large weight
- \rightarrow limited effect using maximum weight
- **Alternative solutions for high energy showers**
	- \rightarrow parallelization
	- **→ use of numerical solution of cascade equations (CE)**

Parallelization of CORSIKA with MPI

Low energy secondaries down to observation level

Parallelization of CORSIKA

- **Each shower is simulated on a large number of CPU**
	- \rightarrow Simulation time reduction limited by the number of machines
	- \rightarrow Disk space problem solved by saving particles in detectors only
- **solution tested for high energy showers only**

 \rightarrow electromagnetic shower not really parallelized ...

Parallel version tested on HP XC3000 (2.53 GHz CPUs, InfiniBand 4X QDR)

Air Shower Simulations

 \mathbf{e}^{\prime}

Can be CE as flexible than MC ? \rightarrow electron cascade equations

$$
\frac{d \Phi_e(E)}{dX} = -\sigma_e \Phi_e(E) + \int_E^{E_0} \sigma_e \Phi_e(\tilde{E}) P_{e\to e}(\tilde{E}, E) d\tilde{E} \n+ \int_E^{E_0} \sigma_y \Phi_y(\tilde{E}) P_{y\to e}(\tilde{E}, E) d\tilde{E} - \alpha \frac{\partial \Phi_e(E)}{\partial E}
$$

Can be CE as flexible than MC ? \rightarrow electron cascade equations

$$
\frac{d \phi_e(E)}{dX} = \left(\sigma_e \phi_e(E) \right) \int_E^{E_0} \sigma_e \phi_e(\tilde{E}) P_{e \to e}(\tilde{E}, E) d\tilde{E} \n+ \int_E^{E_0} \sigma_y \phi_y(\tilde{E}) P_{y \to e}(\tilde{E}, E) d\tilde{E} - \alpha \frac{\partial \phi_e(E)}{\partial E}
$$

Can be CE as flexible than MC ?

 \rightarrow electron cascade equations: analytical solution for each X step

$$
\frac{d \Phi_e(E)}{dX} = -\sigma_e \Phi_e(E) + \int_E^{E_0} \sigma_e \Phi_e(\tilde{E}) P_{e \to e}(\tilde{E}, E) d\tilde{E} \n+ \int_E^{E_0} \sigma_y \Phi_y(\tilde{E}) P_{y \to e}(\tilde{E}, E) d\tilde{E} - \alpha \frac{\partial \Phi_e(E)}{\partial E}
$$

analytical solution needs simplified distributions

 \rightarrow no analytical function for hadronic production

 \rightarrow numerical solution more flexible

$$
\frac{d l_a^i(X)}{dX} = \sum_{d} \sum_{j=i}^{i_{\text{max}}} \overline{W}_{d\rightarrow a}^{ji} l_d^j(X) + S_{ai}^{e/m}(X)
$$

Hadronic Particle Spectra (W)

- **Simulations of all type of possible interactions :**
	- p+Air→π[±],p,K[±],K_∟,K_s,n,γ,e,μ
	- π±+Air→π,p,K±,K_∟,K_s,n,γ,e,μ
	- K[±]+Air→π,p,K[±],K_∟,K_s,n,γ,e,μ
	- Kº+Air→π,p,K±,K_∟,K_s,n,γ,e,μ
	- n+Air→π,p,K,K_∟,K_s,n,γ,e,μ
- **Results stored in tables copied to W**

Hadronic Particle Spectra (W)

Can be CE as flexible than MC ?

 \rightarrow electron cascade equations: analytical solution for each X step

$$
\frac{d \Phi_e(E)}{dX} = -\sigma_e \Phi_e(E) + \int_E^{E_0} \sigma_e \Phi_e(\tilde{E}) P_{e \to e}(\tilde{E}, E) d\tilde{E} \n+ \int_E^{E_0} \sigma_y \Phi_y(\tilde{E}) P_{y \to e}(\tilde{E}, E) d\tilde{E} - \alpha \frac{\partial \Phi_e(E)}{\partial E}
$$

analytical solution needs simplified distributions

- \rightarrow no analytical function for hadronic production
- \rightarrow numerical solution more flexible

Can be CE as flexible than MC ?

 \rightarrow electron cascade equations: analytical solution for each X step

$$
\frac{d \Phi_e(E)}{dX} = -\sigma_e \Phi_e(E) + \int_E^{E_0} \sigma_e \Phi_e(\tilde{E}) P_{e \to e}(\tilde{E}, E) d\tilde{E} \n+ \int_E^{E_0} \sigma_y \Phi_y(\tilde{E}) P_{y \to e}(\tilde{E}, E) d\tilde{E} - \alpha \frac{\partial \Phi_e(E)}{\partial E}
$$

analytical solution needs simplified distributions

 \rightarrow no analytical function for hadronic production

 \rightarrow numerical solution more flexible

Can be CE as flexible than MC ?

 \rightarrow electron cascade equations: analytical solution for each X step

$$
\frac{d \Phi_e(E)}{dX} = -\sigma_e \Phi_e(E) + \int_E^{E_0} \sigma_e \Phi_e(\tilde{E}) P_{e \to e}(\tilde{E}, E) d\tilde{E} \n+ \int_E^{E_0} \sigma_y \Phi_y(\tilde{E}) P_{y \to e}(\tilde{E}, E) d\tilde{E} - \alpha \frac{\partial \Phi_e(E)}{\partial E}
$$

analytical solution needs simplified distributions

 \rightarrow no analytical function for hadronic production

 \rightarrow numerical solution more flexible

Consistent Hybrid Calculation

ngC – June – 2018 T. Pierog, KIT - 17/25

Hybrid vs MC : fluctuations

X max fluctuations

both mean and RMS reproduced \Rightarrow

Flat distribution of proton and iron showers from 1017 to 1020 eV

Hybrid Codes

- *L.G. Dedenko et al.*, pioneering work in 1968 (3D, transport equations, Monte Carlo)
- *A.A. Lagutin et al.* (1+1D, transport equations)
- **Bartol code**, *J. Alvarez-Muniz et al.* (1D, presimulated shower libraries, muons)
- **SENECA**, *H.J. Drescher & G. Farrar* (3D, 1D transport eqs. for hadrons, 1D em. shower matrix formalism based on EGS)
- **CONEX**, *T. Bergmann, V. Chernatckin, R. Engel, D. Heck, N. Kalmykov, S. Ostapchenko, T. Pierog, K. Werner* (1D Transport equations for hadrons and em with realistic cross section and particle distributions)

Cascade Equations in CORSIKA

- **CE done in CONEX model**
- **CE replace part of CORSIKA Monte-Carlo (MC)**
	- First interactions in CONEX independent from threshold E_{low}
		- Event-by-event simulations using first 1D only and then 3D with exactly the same shower
- **CE replace part of the thinning in CORSIKA**
	- \rightarrow No thinned high energy secondary gammas (stay in CE)
		- \Box No muons from EM particles with very large weight
	- Very narrow weight distributions : less artificial fluctuations
	- \rightarrow No thinning for very inclined shower
		- **Only muons and corresponding EM sub-showers in MC**
- **Mean showers can be simulated directly (no high energy MC)**
- **CE slower than MC at low energy**
	- \rightarrow not efficient for low energy showers

CORSIKA with CONEX

ngC – June – 2018 **T. Pierog, KIT - 21/25**

Hybrid 3D : Cascade equation only at intermediate energy

- \rightarrow High energy particle tracks until bin boundaries
- **Low energy particle** tracks from bin boundaries

Purple : CONEX hadrons Dark blue : CONEX muons Dark : CORSIKA hadrons Blue : CORSIKA muons

CONEX vs CORSIKA : time

1D

- **→ CORSIKA : CPU time « Energy**
- **► CE : CPU time « Log(Energy)**
	- **O** <1mn / shower
	- and no artificial fluctuations due to thinning
- **3D**
	- \rightarrow replace thinning
	- \rightarrow 5-10 times faster than thinning for the same maximum weight
	- better weight distribution

Weight distribution R > 100 m

Very narrow weight distribution from sampling \rightarrow less artificial fluctuations

Possible new Approaches

- **More optimal thinning approach**
- **Cascade Equations part of the new development** \rightarrow better integration and no redundant code as now with CONEX/CORSIKA
- **MPI type parallelization taken into account from the beginning**
- **Modularity allows parallelization of sub-processes**
	- GPU based Cherenkov photon calculation
	- \rightarrow GPU based radio
	- ...
- **Deep learning based modules for particular processes ? … for the full shower ?**

- **MC 3D : no cascade equation**
	- CONEX MC at high energy
	- CORSIKA at low energy
	- \rightarrow Track connection at bin boundary

Purple : CONEX hadrons Dark blue : CONEX muons Dark : CORSIKA hadrons Blue : CORSIKA muons

- **Hybrid 1D : Cascade equation only at low energy**
	- **Particle track only until** bin boundaries
	- \rightarrow Interaction off leading particles

Purple : CONEX hadrons Dark blue : CONEX muons

- **3D muons : Cascade equation only for hadrons**
	- \rightarrow Muon tracks start from bin boundaries
	- \rightarrow Muons generated with realistic angular distribution

Blue : CORSIKA muons

CORSIKA vs CONEX : particles

Threshold Effect

- **Xmax fluctuations :**
	- \rightarrow Probability distribution of Xmax, using SIBYLL model at 10^{18} eV (60 $^{\circ}$)
	- almost all fluctuations from the first interaction

Example

Ratio Hybrid/MC

Example : 1 shower with different thresholds

Same profile within 3%

Example : 1 shower with different thresholds

Proton @ 0.1 EeV EGS4 off QGSJET + GHEISHA

Reasonable results for CE but hadronic MC needed for precise results