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IceCube

an optical Cherenkov detector in the deep Antarctic ice

= 125 m string spacing
- "\_/

17 m DOM spacing

1.5 km

o Started full operation in
2011

1 km

« Wide energy range: ~30
GeV neutrinos to PeV
mMuons

 Heavy CORSIKA users
since ca. 2002
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CR, gamma, and neutrino detection
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Trickiest backgrounds: rare showers dominated
by single high-energy muon or neutrino
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CORSIKA in IceCube
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propagation (GPU)

1. Run CORSIKA showers to 2832 m asl

2. Propagate muons to instrumented lceCube detects ~1e11 air showers
volume, simulation stochastic losses per year. We need to choose which
showers to simulate. (Even with
3. Propagate photons to DOMs SIBYLL)

4. Simulate detector response
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Muon Event Types in Volume Detector
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https://docushare.icecube.wisc.edu/dsweb/Get/Document-62498/mumultspec_pb_crgroup.pdf
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Muon Event Types in Volume Detector
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Simulating interesting showers

DESY

Carefully tune injected energy spectrum &
mass composition to avoid simulating
excessively high-multiplicity showers. Only
accounts for average shower behavior.

Sample from a parameterization of the muon
flux at depth (MUPAGE/MuonGun).
Parameterization loses information for > 1
muon.

Apply a known bias by aborting boring showers
as quickly as possible. Used to require
mucking about in CORSIKA internals
(ICECUBE1 option from v7.50); now
significantly easier with D. Baack’s dynamic
stack.

\

v




Biasing scheme for single-like showers

« User specifies a target fraction of showers to accept (“bias factor,” e.g. 0.01)
* Plugin uses the Elbert formula to pick a muon energy threshold for each shower
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Vertical showers
—— 1 PeV proton

P(N,(Xx > Xmin) > 0)
=
Q
Acceptance probability
=
N

107° 1 1 PeV iron
10-1004 — 1 EeV proton
— 1 EeV iron 5
107~ -
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Xmin = Eyi, min/Eprimary/A Xmax = Ei, max/Eprimary/A

e Shower is killed with a probability (always < 1!) based on the highest-energy muon in the
shower

¢ Kill probability increases monotonically with energy, so shower can be killed before the first muon
is produced.
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Demo: vertical proton showers
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Demo: vertical proton showers
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Down-going atmospheric neutrinos

« Majority of high-energy neutrinos
are embedded in high-multiplicity p p
muon bundles.

« Showers dominated by a single

high-energy neutrino are rare. K+ et
. . ) K+ "
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Other possible applications

DESY

Combined IceTop-lceCube events: defer EM shower until hadronic core
turns into something interesting

CTA: efficiently simulate gamma-like proton showers

Any other situation where you need complete showers in a small corner of
your phase space (and where the probability of landing in that corner
decreases monotonically in the order in which you propagate particles)

Variety of useful manipulations possible simply by having control over
the order in which particles leave the stack. DynStack is critical to
efficient rare-background simulation today, and similar functionality
needs to exist in next-generation CORSIKA.
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Wish list for next-generation CORSIKA

1.Open development: version control makes it much easier to follow core changes and
contribute useful patches. Also for CORSIKA Classic!

2. Modularity:

1. Extensions: Experiment-specific extensions should be able to exist separate from the
mainline distribution, and rely on relatively stable interfaces.

2. Output: Everyone has their favorite output format (row-oriented table, column-oriented in-
memory table, shared-memory queue, zmq socket, etc.). These should be largely
interchangeable, and users should be able to provide their own.

3. Automated testing makes it easier to contribute patches that don’t break everything.

4. CORSIKA as a library: it should be possible to control shower initialization, random number
generation, and simulation stepping from client code.

5. Unique particle IDs. Every particle needs a unique (per shower) ID.

6. Flexible history: not everyone has the same definition of interesting history. Client code should
be able to reconstruct the complete particle graph and calculate its own.

DESY
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Backup: CORSIKA as
a Service



simprod CORSIKA +
ISCORSIKAReader
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simprod CORSIKA +
ISCORSIKAReader

{ Readfile

[ EVTH =t I3Partic|e]é
[ groung-tovet partcle_~{ 1sparticie
[ ground-level particle HBParticlejé

[ ground-level particle ]—»CISParticle]%
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simprod CORSIKA +

I3CORSIKAReader ISCORSIKAService

{ Generate

[ Steering card j
¥ [ primary I3Particle }

( DATNNNNNN ) | TCORSIKA server

.................................................................................... E EVTH

)
Readme ..................................................................................................... C orimary particle J
( EVTH - 13Particle | [ ground-level particle |
[ ground-level particle HBParticlejg E ground-level particle J

[ ground-level particle HBParticlej%
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C ground-le.vel particle ]—»CISPe;rticlejé ( EVTE j
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simprod CORSIKA +

I3CORSIKAReader ISCORSIKAService

{ Generate

[ primary I3Particle
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CORSIKA server}
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Controlling shower generation from IceTray

. Choose primary type and energy. You can:

a. Generate from arbitrary energy
distributions (no more LE/HE/ME sets)

b. Generate natural rate simulation
different models (GST, GSF, etc)

. Choose impact position and direction.
Based on overburden and trajectory, you
can:

a. Skip the shower if no muon could reach
the impact point

b. Set muon, hadron, and EM energy
thresholds (e.g. does it hit IceTop?)

3. Choose muon bias factor, e.g. 10-4 for main
(biased) shower, 1 for coincident showers
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Performance vs stock
CORSIKA

Time per shower (ms on my laptop)

Stock +skip sub- +set energy
Energy spectrum CORSIKA RemoteControl threshold threshold per
showers shower
E-26 0.6-100 TeV
E-13-30 TeV

E-26 30 TeV-1PeV

E-21 PeV-1 EeV

CORSIKA 7.64/SIBYLL2.3c, curved atr%osphere 12, neutrinos on, 0-90 degrees



Performance vs stock
CORSIKA

Time per shower (ms on my laptop)

Stock +skip sub- +set energy

Energy spectrum RemoteControl threshold threshold per
showers shower

CORSIKA

E-26 0.6-100 TeV

E-13-30 TeV

~1.8x
! speedup

E-26 30 TeV-1PeV 17.1 16.9 15.7 9.6

E-21 PeV-1 EeV 820 1131 1129 541

CORSIKA 7.64/SIBYLL2.3c, curved atr%osphere 12, neutrinos on, 0-90 degrees



Time per muon vs time per shower
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High-energy showers can
take a while to finish

Time between muons is
similar for different energy
ranges



