

11th October 2024

JHEP08(2023)166 RB, R. Cepedello, M. Hirsch

Lepton number violation and neutrino masses in *N*_RSMEFT

Rebeca Beltrán IFIC (CSIC-UV)

rebeca.beltran@ific.uv.es

- → What type of UV models give rise to LNV interactions in NRSMEFT?
- → What is the connection between LNV operators and Majorana masses for active neutrinos?
- → Can we derive any constraints on the operators from neutrino masses?

- → What type of UV models give rise to LNV interactions in NRSMEFT?
- → What is the connection between LNV operators and Majorana masses for active neutrinos?
- → Can we derive any constraints on the operators from neutrino masses?

Opening up *N*_R**SMEFT**

N_R**SMEFT**

SMEFT extended with invariant operators containing RH neutrinos:

• Following a diagrammatic procedure

NRSMEFT operators

d=6

	$\psi^2 H^3$ (+h.c.)		$(\overline{R}R)(\overline{R}R)$	$(\overline{L}L)(\overline{R}R)$		
\mathcal{O}_{LNH^3}	$(\overline{L}N_R)\tilde{H}(H^{\dagger}H)$	$\mathcal{O}_{NN} (\overline{N_R}\gamma^\mu N_R)(\overline{N_R}\gamma_\mu N_R)$		\mathcal{O}_{LN}	$(\overline{L}\gamma^{\mu}L)(\overline{N_R}\gamma_{\mu}N_R)$	
1	$\psi^2 H^2 D$ (+h.c.)	\mathcal{O}_{eN}	$(\overline{e}_R \gamma^\mu e_R) (\overline{N_R} \gamma_\mu N_R)$	\mathcal{O}_{QN}	$(\overline{Q}\gamma^{\mu}Q)(\overline{N_R}\gamma_{\mu}N_R)$	
\mathcal{O}_{NH^2D}	$(\overline{N_R}\gamma^\mu N_R)(H^\dagger i\overleftrightarrow{D_\mu}H)$	\mathcal{O}_{uN}	$(\overline{u}_R \gamma^\mu u_R)(\overline{N_R} \gamma_\mu N_R)$	(\overline{L})	$R)(\overline{L}R)$ (+h.c.)	
\mathcal{O}_{NeH^2D}	$(\overline{N_R}\gamma^\mu e_R)(\tilde{H}^\dagger i D_\mu H)$	\mathcal{O}_{dN}	$(\overline{d}_R \gamma^\mu d_R) (\overline{N_R} \gamma_\mu N_R)$	\mathcal{O}_{LNLe}	$(\overline{L}N_R)\epsilon(\overline{L}e_R)$	
(7	$(\overline{L}R)(\overline{R}L) $ (+h.c.)	\mathcal{O}_{duNe}	$(\overline{d}_R\gamma^\mu u_R)(\overline{N_R}\gamma_\mu e_R)$	$(\overline{d}_R \gamma^\mu u_R) (\overline{N_R} \gamma_\mu e_R) O_{LNQd} (\overline{L}N_R)$		
\mathcal{O}_{QuNL}	$(\overline{Q}u_R)(\overline{N_R}L)$	\mathcal{O}_{NNNN}	$(\overline{N_R^c}N_R)(\overline{N_R^c}N_R)$	\mathcal{O}_{LdQN}	$(\overline{L}d_R)\epsilon(\overline{Q}N_R)$	

Generated @ loop level:

neutrino magnetic moment operators [2405.08877] RB, Bolton, Deppisch, Hati, Hirsch

$\psi^2 HX(+h.c.)$						
\mathcal{O}_{NB}	$g_1(\overline{L}\sigma_{\mu\nu}N)\tilde{H}B^{\mu\nu}$					
${\cal O}_{NW}$	$g_2(\overline{L}\sigma_{\mu\nu}N)\tau^I\tilde{H}W^{I\mu\nu}$					

NRSMEFT operators

d=7, $\Delta L = 2$

 $L(N_R) = 1$

$\psi^2 H^3 D$			$\psi^4 H$	$\psi^4 H$		
0	$\epsilon_{ij}(\overline{N_R^c}\gamma_\mu L^i)(iD^\mu H^j)(H^\dagger H)$	\mathcal{O}_{LNLH}	$\epsilon_{ij}(\overline{L}\gamma_{\mu}L)(\overline{N_{R}^{c}}\gamma^{\mu}L^{i})H^{j}$	\mathcal{O}_{LNeH}	$(\overline{L}N_R)(\overline{N_R^c}e_R)H$	
O_{NLH^3D}	$\epsilon_{ij}(\overline{N_R^c}\gamma_{\mu}L^i)H^j(H^{\dagger}i\overleftrightarrow{D^{\mu}}H)$	Oonuu	$\epsilon_{ij}(\overline{Q}\gamma_{\mu}Q)(\overline{N_{R}^{c}}\gamma^{\mu}L^{i})H^{j}$	\mathcal{O}_{eLNH}	$H^{\dagger}(\overline{e_R}L)(\overline{N_R^c}N_R)$	
$\psi^2 H^2 D^2$		UQNLH	$\epsilon_{ij}(\overline{Q}\gamma_{\mu}Q^{i})(\overline{N_{R}^{c}}\gamma^{\mu}L^{j})H$	\mathcal{O}_{QNdH}	$(\overline{Q}N_R)(\overline{N_R^c}d_R)H$	
$\mathcal{O}_{NeH^2D^2}$	$\epsilon_{ij}(\overrightarrow{N_R^c} \overset{\longleftrightarrow}{D_\mu} e_R)(H^i D^\mu H^j)$	\mathcal{O}_{eNLH}	$\epsilon_{ij}(\overline{e_R}\gamma_\mu e_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{dQNH}	$H^{\dagger}(\overline{d_R}Q)(\overline{N_R^c}N_R)$	
Ouropa	$(\overrightarrow{N_R^c}\overleftrightarrow{\partial_\mu}N_R)(H^\dagger\overleftrightarrow{D^\mu}H)$	\mathcal{O}_{dNLH}	$\epsilon_{ij}(\overline{d_R}\gamma_\mu d_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{QNuH}	$(\overline{Q}N_R)(\overline{N_R^c}u_R)\tilde{H}$	
$\mathcal{O}_{NH^2D^2}$	$(\overline{N_R^c}N_R)(D_\mu H)^\dagger D^\mu H$	\mathcal{O}_{uNLH}	$\epsilon_{ij}(\overline{u_R}\gamma_\mu u_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{uQNH}	$\tilde{H}^{\dagger}(\overline{u_R}Q)(\overline{N_R^c}N_R)$	
$\psi^2 H^2 X$		\mathcal{O}_{duNLH}	$\epsilon_{ij}(\overline{d_R}\gamma_\mu u_R)(\overline{N_R^c}\gamma^\mu L^i)\tilde{H}^j$	\mathcal{O}_{LNNH}	$(\overline{L}N_R)(\overline{N_R^c}N_R)\tilde{H}$	
\mathcal{O}_{NeH^2W}	$(\epsilon \tau^{I})_{ij} (\overline{N_{R}^{c}} \sigma^{\mu\nu} e_{R}) (H^{i} H^{j}) W^{I}_{\mu\nu}$	\mathcal{O}_{dQNeH}	$\epsilon_{ij}(\overline{d_R}Q^i)(\overline{N_R^c}e_R)H^j$	\mathcal{O}_{NLNH}	$\tilde{H}^{\dagger}(\overline{N_R}L)(\overline{N_R^c}N_R)$	
\mathcal{O}_{NH^2B}	$(\overline{N_R^c}\sigma^{\mu\nu}N_R)(H^{\dagger}H)B_{\mu\nu}$	(Do y y	$(\overline{Q}u_R)(\overline{N_R^c}e_R)H$		$\psi^2 H^4$	
\mathcal{O}_{NH^2W}	$(\overline{N_R^c}\sigma^{\mu\nu}N_R)(H^\dagger\tau^I H)W^I_{\mu\nu}$	♥QuNeH	$(\overline{Q}\sigma_{\mu\nu}u_R)(\overline{N_R^c}\sigma^{\mu\nu}e_R)H$	\mathcal{O}_{NH^4}	$(\overline{N_R^c}N_R)(H^{\dagger}H)^2$	

Missing those generated @ loop level

Diagrammatic method

Diagrammatic method

[1204.5862] Bonnet, Hirsch, Ota, Winter [2009.13537] Gargalionis, Volkas [2207.13714] Cepedello, Esser, Hirsch, Sanz

Particle dictionary

	Sca	ılars										
Na	me	S	\mathcal{S}_1	φ	Ξ	Ξ_1	ω_1	ω_2	2 П]	Π_7	ζ
Irre	ер (1	1, 1, 0)	(1, 1, 1)	$\left(1,2,\frac{1}{2}\right)$	(1,3,0)	(1,3,1)	$(3, 1, -\frac{1}{3})$	$\left(\frac{1}{3}\right)$ $\left(3,1\right)$	$,\frac{2}{3})$ (3, 2	$\left(\frac{1}{6}\right)$ $\left(3, \frac{1}{6}\right)$	$2, \frac{7}{6}$) (3	$,3,-rac{1}{3}ig)$
			Fermi	ons								
		Na	ime J	V	E	Δ_1	Δ_3	Σ	Σ_1			
		Irr	ep $(1,$	(1,0) (1,1)	(1, -1) (1	$(2, -\frac{1}{2})$	$\left(1,2,-\frac{3}{2}\right)$	(1, 3, 0)	(1, 3, -	1)		
		Na	ime l	J	D	Q_1	Q_5	Q_7	T_1	T_2	2	
		Irr	ep (3, 2)	$\left(1,\frac{2}{3}\right)$ $\left(3,1\right)$	$(,-\frac{1}{3})$ ($3, 2, \frac{1}{6}$	$\left(3,2,-\frac{5}{6}\right)$	$(3, 2, \frac{7}{6})$) (3, 3, -	$\frac{1}{3}$) (3, 3	$,\frac{2}{3})$	
	Vec	tors:										
Name	${\mathcal B}$	Ľ	\mathcal{S}_1	W W	\mathcal{V}_1 \mathcal{L}	1	\mathcal{L}_3	\mathcal{U}_1	\mathcal{U}_2	\mathcal{Q}_1	\mathcal{Q}_5	\mathcal{X}
Irrep	(1, 1, 0)	(1, 1)	(1, 1) (1,	(1, 3, 0) (1, 3)	3,1) (1,2	$(1, \frac{1}{2})$	$(3, -\frac{3}{2})$	$(1, -\frac{1}{3})$	$\left(3,1,\frac{2}{3}\right)$	$\left(3, 2, \frac{1}{6}\right)$	$(3, 2, -\frac{5}{6})$	$(3, 3, \frac{2}{3})$

[1711.10391] de Blas, Criado, Pérez-Victoria, Santiago "Granada Dictionary"

Dictionary for d=6

Оре	rator classes	$\square \rangle$	Diagrams		Mode	els
	$^{2/24}$.				Models	Operators
	T		\setminus /		S	$\mathcal{O}_{NN}, \mathcal{O}_{NNNN}$
				/	\mathcal{S}_1	$\mathcal{O}_{LNLe},\mathcal{O}_{eN}$
	$\psi^2 H^2 D$:	>	$\langle \rangle$	\prec	φ	$\mathcal{O}_{QuNL},\mathcal{O}_{LNLe},\mathcal{O}_{LNQd},\mathcal{O}_{LN},\mathcal{O}_{LNH^3}$
		/	·. /	Ň	ω_1	$\mathcal{O}_{LNQd},\mathcal{O}_{dN},\mathcal{O}_{duNe}$
	$\psi^2 H^3$:	>			ω_2	\mathcal{O}_{uN}
	φ ·				Π_1	$\mathcal{O}_{LNQd},\mathcal{O}_{QN}$
					Δ_1	$\mathcal{O}_{NH^2D},\mathcal{O}_{NeH^2D}$
			\prec \rightarrow		B	$\mathcal{O}_{NH^2D}, \mathcal{O}_{NN}, \mathcal{O}_{eN}, \mathcal{O}_{uN}, \mathcal{O}_{dN}, \mathcal{O}_{LN}, \mathcal{O}_{QN}$
		1	\setminus /		\mathcal{B}_1	$\mathcal{O}_{NeH^2D},\mathcal{O}_{eN},\mathcal{O}_{duNe}$
$\psi^2 H^3$	Two-particle mod	lels			\mathcal{L}_1	\mathcal{O}_{LN}
	$SS: (\mathcal{S}, \varphi), (\Xi_1$	$, \varphi), (\Xi, \varphi)$			\mathcal{U}_1	\mathcal{O}_{dN}
\mathcal{O}_{LNH^3}	$FF: (\Delta_1, \mathcal{N}), (\Delta_1, \mathcal{N})$	$\Delta_1, \Sigma_1), (\Delta$	$_{1},\Sigma)$		\mathcal{U}_2	$\mathcal{O}_{QuNL}, \mathcal{O}_{uN}, \mathcal{O}_{duNe}$
	$FS: (\mathcal{N}, \mathcal{S}), (\Delta$	$(\Delta_1, \mathcal{S}), \ (\Delta_1, \Xi)$	Ξ_1), (Σ_1, Ξ_1), (Δ_1	$, \Xi), (\Sigma, \Xi)$	\mathcal{Q}_1	$\mathcal{O}_{QuNL}, \mathcal{O}_{QN}$

Operator classes

Diagrams

Models

Explicit example: \mathcal{O}_{LNLH}

$$\mathcal{O}_{LNLH} \quad \epsilon_{ij}(\overline{L}\gamma_{\mu}L)(\overline{N_R^c}\gamma^{\mu}L^i)H^j \quad \mathbf{rec} \qquad 16 \text{ models } (SS, FS, FV)$$

$\psi^4 H$	Models
	SS : $(\mathcal{S}_1, arphi) \; (arphi, \Xi_1)$
${\cal O}_{LNLH}$	$FS : (E, \mathcal{S}_1) (\Sigma_1, \Xi_1) (\Delta_1, \mathcal{S}_1) (\Delta_1, \Xi_1) (\mathcal{N}, \varphi) (\Sigma, \varphi)$
	$FV : (\mathcal{N}, \mathcal{B}) (\Sigma, \mathcal{W}) (\mathcal{N}, \mathcal{L}_1) (\Sigma, \mathcal{L}_1) (\Delta_1, \mathcal{B}) (\Delta_1, \mathcal{W}) (E, \mathcal{L}_1) (\Sigma_1, \mathcal{L}_1)$

$$\psi^4 H$$
 :

Models for the rest of the operators + Lagrangian terms listed in [2306.12578] RB, Cepedello, Hirsch

- → What type of UV models give rise to LNV interactions in NRSMEFT?
- → What is the connection between LNV operators and Majorana masses for active neutrinos?
- → Can we derive any constraints on the operators from neutrino masses?

A black box for NRSMEFT

Extended black box:* Observation of LNV @ LHC guarantees the existence of Majorana masses for the active neutrinos.

We want to prove it in **NRSMEFT**, where $\Delta(L) = 2$ processes are generated by either:

A) two LNC operators and a Majorana propagator

B) one LNC and one **LNV operator**, along with a LNC propagator (no mass flip).

LNV from Majorana propagator

 $\mathcal{O}_{duNe} \ (\overline{d_R}\gamma^\mu u_R)(\overline{N_R}\gamma_\mu e_R)$ (d=6 LNC) Majorana mass M_N A) +Majorana neutrino mass: LNV process @LHC: 4-loop realisation of Weinberg operator $pp \rightarrow e^+ e^+ j j$ $\overline{d_R}$ Q e_R u_R UR $\overline{N_R}$, $\overline{N_R}$ e_R UR u_R Both observables are present or none of them is, as in the black box theorem for $0\nu\beta\beta$ decay

LNV from d=7 operator

B) \mathcal{O}_{LdQN} $(\overline{L^{i}}d_{R})\epsilon_{ij}(\overline{Q^{j}}N_{R})$ (d=6 LNC) + \mathcal{O}_{dNLH} $\epsilon_{ij}(\overline{d_{R}}\gamma^{\mu}d_{R})(\overline{N_{R}^{c}}\gamma_{\mu}L^{i})H^{j}$ (d=7 LNV)

2-loop realisation of Weinberg operator:

LNV processes @LHC:

 $pp \to e^+ e^+ j j W$

LNV from d=7 operator

B) \mathcal{O}_{LdQN} $(\overline{L^{i}}d_{R})\epsilon_{ij}(\overline{Q^{j}}N_{R})$ (d=6 LNC) + \mathcal{O}_{dNLH} $\epsilon_{ij}(\overline{d_{R}}\gamma^{\mu}d_{R})(\overline{N_{R}^{c}}\gamma_{\mu}L^{i})H^{j}$ (d=7 LNV)

Note. Divergent loop integral, it should be cancelled with a lower order diagram. For the leading contribution **one needs to know the underlying UV model.**

- → What type of UV models give rise to LNV interactions in NRSMEFT?
- → What is the connection between LNV operators and Majorana masses for active neutrinos?
- → Can we derive any constraints on the operators from neutrino masses?

Neutrino masses in d=7 models

Neutrino masses:

- tree level

 φ^{\dagger} Ξ_1^{\dagger} $arphi^\dagger$ \mathcal{N} H' N_R N_R H \mathcal{S}_1^\dagger \mathcal{S}_1 φ^{\dagger} E N_R LН N_R

- loop level

Neutrino masses:

tree level
 type I seesaw

- loop level

Neutrino masses:

tree level

type I seesaw type II seesaw

- loop level

Neutrino masses:

tree level
 type I seesaw

type II seesaw

- loop level Zee model

Neutrino masses:

tree level
 type I seesaw
 type II seesaw

- loop level Zee model 2-loop

 $\#1(\mathcal{N}, arphi)$ Lagrangian of the model

$$\mathcal{L} \propto y_{NL}^{\varphi} \left(\overline{N_R} L \right) \varphi + y_{\mathcal{N}L}^{\varphi} \left(\overline{\mathcal{N}} L \right) \varphi + y_{\mathcal{N}L} \left(\overline{\mathcal{N}} L \right) H + \frac{1}{2} M_{\mathcal{N}} \overline{\mathcal{N}^c} \mathcal{N} + \text{h.c.}$$

Leading neutrino mass contribution

$$m_{\nu} \propto y_{\mathcal{N}L}^2 \frac{v^2}{M_{\mathcal{N}}}$$

Matching to the operator WC

$$c_{LNLH} = -\frac{1}{4} \frac{y_{NL}^{\varphi} y_{\mathcal{N}L}^{\varphi} y_{\mathcal{N}L}}{M_{\mathcal{N}} m_{\varphi}^2}$$

 $M_{\mathcal{N}} \simeq m_{\varphi} \simeq \Lambda$

 $\#1(\mathcal{N}, arphi)$ Lagrangian of the model

$$\mathcal{L} \propto y_{NL}^{\varphi} \left(\overline{N_R} L \right) \varphi + y_{\mathcal{N}L}^{\varphi} \left(\overline{\mathcal{N}} L \right) \varphi + y_{\mathcal{N}L} \left(\overline{\mathcal{N}} L \right) H + \frac{1}{2} M_{\mathcal{N}} \overline{\mathcal{N}^c} \mathcal{N} + \text{h.c.}$$

Leading neutrino mass contribution

 $m_{\nu} \propto y_{\mathcal{N}L}^2 \frac{v^2}{M_{\mathcal{N}}}$

Matching to the operator WC

$$c_{LNLH} = -\frac{1}{4} \frac{y_{NL}^{\varphi} y_{\mathcal{N}L}^{\varphi} y_{\mathcal{N}L}}{M_{\mathcal{N}} m_{\varphi}^2}$$

We can derive an upper limit on the WC:

$$c_{LNLH} \lesssim 10^{-6} \frac{y_{NL}^{\varphi} y_{NL}^{\varphi}}{\Lambda^3} \left(\frac{\Lambda}{v}\right)^{1/2} \left(\frac{m_{\nu}}{0.1 \,\mathrm{eV}}\right)$$

Negligible observable processes

 $M_{\mathcal{N}} \simeq m_{\varphi} \simeq \Lambda$

 $\#3(\mathcal{S}_1, arphi)$ Lagrangian of the model

$$\mathcal{L} \propto y_L^{\mathcal{S}_1} \left(\overline{L^c} L \right) \mathcal{S}_1 + y_{Ne}^{\mathcal{S}_1} \left(\overline{N_R^c} e_R \right) \mathcal{S}_1 + y_{eL}^{\varphi} \left(\overline{e_R} L \right) \varphi^{\dagger} + \kappa_{\mathcal{S}_1 \varphi} \mathcal{S}_1^{\dagger} H \varphi + \text{h.c.} + \dots$$

 $#3(\mathcal{S}_1, \varphi)$ Lagrangian of the model

 $\mathcal{L} \propto y_L^{\mathcal{S}_1} \left(\overline{L^c} L \right) \mathcal{S}_1 + y_{Ne}^{\mathcal{S}_1} \left(\overline{N_R^c} e_R \right) \mathcal{S}_1 + y_{eL}^{\varphi} \left(\overline{e_R} L \right) \varphi^{\dagger} + \kappa_{\mathcal{S}_1 \varphi} \mathcal{S}_1^{\dagger} H \varphi + \text{h.c.} + \dots$

Observability depends on which are the suppressed couplinas:

$$y_L^{\mathcal{S}_1} \sim y_{eL}^{\varphi} \sim (\kappa_{\mathcal{S}_1 \varphi} / \Lambda) \sim \epsilon$$
 or

 $y_L^{\mathcal{S}_1} \sim \epsilon^3$ or $y_{\epsilon T}^{\varphi} \sim \epsilon^3$ 18

★ We provide the first systematic decomposition of d=6 and d=7 operators in N_R SMEFT at tree level.

★ Models for LNV d=7 operators will always lead to Majorana active neutrino masses at tree-, 1- or 2-loop level.

Neutrino masses put tight constraints on the Wilson coefficients*
 *Except for decompositions leading to radiative neutrino masses, where some operators might lead to observable effects.

11th October 2024

JHEP08(2023)166 RB, R. Cepedello, M. Hirsch

Lepton number violation and neutrino masses in *N*_RSMEFT

Rebeca Beltrán IFIC (CSIC-UV)

rebeca.beltran@ific.uv.es

Backup: BNV models

	$\psi^4 (d = 6)$	Models			
Occur	$\varepsilon = \left(\overline{O^{c}}O_{c}\right)\left(\overline{d^{c}}N_{B}\right)$	S :	ω_1		
	$c_{ij}(a_ia_j)(a_{R^{IVR}})$	V :	\mathcal{Q}_1		
\mathcal{O}_{uddN}	$\left(\overline{u_R^c}d_R ight)\left(\overline{d_R^c}N_R ight)$	S :	ω_1, ω_2		
	$\psi^4 H (d=7)$		Models		
		SS :	(ω_2,Π_1)		
\mathcal{O}_{QNddH}	$\varepsilon_{ij}\left(\overline{Q_i}N_R\right)\left(\overline{d_R}d_R^c\right)\tilde{H}_j$	FS :	(U,ω_2) (Δ_1,ω_2) (Q_1,Π_1)		
		FV :	$(Q_1, \mathcal{Q}_1) (Q_1, \mathcal{U}_1) (\Delta_1, \mathcal{Q}_1) (U, \mathcal{U}_1)$		
		SS :	(ω_1,Π_1) (Π_1,ζ)		
\mathcal{O}_{QNQH}	$\varepsilon_{ij}\left(\overline{Q_i}N_R\right)\left(\overline{Q_j}Q^c\right)H$	FS :	(D,ω_1) (Δ_1,ω_1) (T_1,ζ) (Δ_1,ζ)		
			$(D,\Pi_1) \ (T_1,\Pi_1)$		
		SS :	(ω_1,Π_1)		
\mathcal{O}_{QNudH}	$\left(\overline{Q}N_R\right)\left(\overline{u_R}d_R^c\right)H$	FS :	(D,ω_1) (Δ_1,ω_1) (Q_5,Π_1) (Q_1,Π_1)		
		FV :	$(Q_1, \mathcal{Q}_1) (Q_1, \mathcal{U}_1) (Q_5, \mathcal{Q}_5) (Q_5, \mathcal{U}_2)$		
			$(\Delta_1, \mathcal{Q}_1) (D, \mathcal{U}_1) (\Delta_1, \mathcal{Q}_5) (D, \mathcal{U}_2)$		

Table 10. Baryon number violating operators of d = 6 and d = 7 in N_R SMEFT and their tree-level decompositions. Models are classified in terms of the Lorentz nature of the fields.

Backup: All d=7 operators

	$N\psi H^3D$		$N\psi^3D$	$N^2\psi^2H$		
\mathcal{O}_{NL1}	$\epsilon_{ij}(\overline{N^C}\gamma_{\mu}L^i)(iD^{\mu}H^j)(H^{\dagger}H)$	\mathcal{O}_{eNLLD}	$\epsilon_{ij}(\overline{e}\gamma_{\mu}N)(\overline{L^{i,C}}i\overleftrightarrow{D}^{\mu}L^{j})$	\mathcal{O}_{LNeH}	$(\overline{L}N)(\overline{N^C}e)H$	
\mathcal{O}_{NL2}	$\epsilon_{ij}(\overline{N^C}\gamma_{\mu}L^i)H^j(H^{\dagger}i\overleftrightarrow{D^{\mu}}H)$	\mathcal{O}_{duNeD}	$(\overline{d}\gamma_{\mu}u)(\overline{N^{C}}i\overleftrightarrow{D}^{\mu}e)$	\mathcal{O}_{eLNH}	$H^{\dagger}(\overline{e}L)(\overline{N^{C}}N)$	
	$N\psi H^2 D^2$	O_{QuNLD}	$(\overline{Q}i\overleftrightarrow{D}_{\mu}u)(\overline{N^C}\gamma^{\mu}L)$	\mathcal{O}_{QNdH}	$(\overline{Q}N)(\overline{N^C}d)H$	
\mathcal{O}_{NeD}	$\epsilon_{ij}(\overrightarrow{N^C}\overrightarrow{D}^{\mu}e)(H^iD^{\mu}H^j)$	\mathcal{O}_{dQNLD}	$\epsilon_{ij}(\overline{d}i\overleftrightarrow{D}_{\mu}Q^{i})(\overline{N^{C}}\gamma^{\mu}L^{j})$	\mathcal{O}_{dQNH}	$H^{\dagger}(\overline{d}Q)(\overline{N^C}N)$	
	$N\psi H^2 X$		$N^2 \psi^2 D$	\mathcal{O}_{QNuH}	$(\overline{Q}N)(\overline{N^C}u) ilde{H}$	
\mathcal{O}_{NeW}	$g_2(\epsilon \tau^I)_{ij}(\overline{N^C}\sigma^{\mu\nu}e)(H^iH^j)W^I_{\mu\nu}$	\mathcal{O}_{LND}	$(\overline{L}\gamma_{\mu}L)(\overline{N^{C}}i\overleftrightarrow{\partial}^{\mu}N)$	O_{uQNH}	$\tilde{H}^{\dagger}(\overline{u}Q)(\overline{N^{C}}N)$	
	$N\psi HDX$	\mathcal{O}_{QND}	$(\overline{Q}\gamma_{\mu}Q)(\overline{N^{C}}i\overleftrightarrow{\partial}^{\mu}N)$		$N^3\psi H$	
\mathcal{O}_{NLB1}	$g_1\epsilon_{ij}(\overline{N^C}\gamma^{\mu}L^i)(D^{\nu}H^j)B_{\mu\nu}$	\mathcal{O}_{eND}	$(\overline{e}\gamma_{\mu}e)(\overline{N^{C}}i\overleftrightarrow{\partial}^{\mu}N)$	\mathcal{O}_{LNNH}	$(\overline{L}N)(\overline{N^C}N)\tilde{H}$	
\mathcal{O}_{NLB2}	$g_1 \epsilon_{ij} (\overline{N^C} \gamma^\mu L^i) (D^\nu H^j) \tilde{B}_{\mu\nu}$	\mathcal{O}_{uND}	$(\overline{u}\gamma_{\mu}u)(\overline{N^{C}}i\overleftrightarrow{\partial}^{\mu}N)$	\mathcal{O}_{NLNH}	$\tilde{H}^{\dagger}(\overline{N}L)(\overline{N^{C}}N)$	
\mathcal{O}_{NLW1}	$g_2(\epsilon\tau^I)_{ij}(\overline{N^C}\gamma^{\mu}L^i)(D^{\nu}H^j)W^I_{\mu\nu}$	\mathcal{O}_{dND}	$(\overline{d}\gamma_{\mu}d)(\overline{N^{C}}i\overleftrightarrow{\partial}^{\mu}N)$		$B: N\psi^3 D \& N\psi^3 H$	
\mathcal{O}_{NLW2}	$g_2(\epsilon\tau^I)_{ij}(\overline{N^C}\gamma^{\mu}L^i)(D^{\nu}H^j)\tilde{W}^I_{\mu\nu}$		N^4D	\mathcal{O}_{uNdD}	$\epsilon_{\alpha\beta\sigma}(\overline{u}_{\alpha}\gamma_{\mu}N)(\overline{d}_{\beta}i\overleftarrow{D}^{\mu}d_{\sigma}^{C})$	
	N^2H^4	\mathcal{O}_{NND}	$(\overline{N}\gamma_{\mu}N)(\overline{N^{C}}i\overleftrightarrow{\partial}^{\mu}N)$	\mathcal{O}_{dNQD}	$\epsilon_{ij}\epsilon_{\alpha\beta\sigma}(\overline{d}_{\alpha}\gamma_{\mu}N)(\overline{Q}_{i\beta}i\overleftrightarrow{D}^{\mu}Q_{j\sigma}^{C})$	
\mathcal{O}_{NH}	$(\overline{N^C}N)(H^{\dagger}H)^2$		$N\psi^3H$	\mathcal{O}_{QNdH}	$\epsilon_{ij}\epsilon_{\alpha\beta\sigma}(\overline{Q}_{i\alpha}N)(\overline{d}_{\beta}d_{\sigma}^{C})\tilde{H}^{j}$	
	$N^2H^2D^2$	\mathcal{O}_{LNLH}	$\epsilon_{ij}(\overline{L}\gamma_{\mu}L)(\overline{N^C}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{QNQH}	$\epsilon_{ij}\epsilon_{\alpha\beta\sigma}(\overline{Q}_{i\alpha}N)(\overline{Q}_{j\beta}Q^C_{\sigma})H$	
\mathcal{O}_{NHD1}	$(\overrightarrow{N^C}\overleftrightarrow{\partial}_{\mu}N)(H^{\dagger}\overrightarrow{D^{\mu}}H)$	\mathcal{O}_{QNLH1}	$\epsilon_{ij}(\overline{Q}\gamma_{\mu}Q)(\overline{N^C}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{QNudH}	$\epsilon_{\alpha\beta\sigma}(\overline{Q}_{\alpha}N)(\overline{u}_{\beta}d_{\sigma}^C)H$	
\mathcal{O}_{NHD2}	$(\overline{N^C}N)(D_{\mu}H)^{\dagger}D^{\mu}H$	\mathcal{O}_{QNLH2}	$\epsilon_{ij}(\overline{Q}\gamma_{\mu}Q^{i})(\overline{N^{C}}\gamma^{\mu}L^{j})H$		$N^2 X^2$	
	$N^2 H^2 X$	\mathcal{O}_{eNLH}	$\epsilon_{ij}(\overline{e}\gamma_{\mu}e)(\overline{N^C}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{NB1}	$\alpha_1(\overline{N^C}N)B_{\mu u}B^{\mu u}$	
\mathcal{O}_{NHB}	$g_1(\overline{N^C}\sigma_{\mu\nu}N)(H^{\dagger}H)B^{\mu\nu}$	\mathcal{O}_{dNLH}	$\epsilon_{ij}(\overline{d}\gamma_{\mu}d)(\overline{N^C}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{NB2}	$\alpha_1(\overline{N^C}N)B_{\mu\nu}\tilde{B}^{\mu\nu}$	
\mathcal{O}_{NHW}	$g_2(\overline{N^C}\sigma_{\mu\nu}N)(H^{\dagger}\tau^I H)W^{I\mu\nu}$	\mathcal{O}_{uNLH}	$\epsilon_{ij}(\overline{u}\gamma_{\mu}u)(\overline{N^C}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{NW1}	$\alpha_2(\overline{N^C}N)W^I_{\mu\nu}W^{I\mu\nu}$	
		\mathcal{O}_{duNLH}	$\epsilon_{ij}(\overline{d}\gamma_{\mu}u)(\overline{N^C}\gamma^{\mu}L^i)\tilde{H}^j$	\mathcal{O}_{NW2}	$\alpha_2(\overline{N^C}N)W^I_{\mu\nu}\tilde{W}^{I\mu\nu}$	
		\mathcal{O}_{dQNeH}	$\epsilon_{ij}(\overline{d}Q^i)(\overline{N^C}e)H^j$	\mathcal{O}_{NG1}	$\alpha_3(\overline{N^C}N)G^A_{\mu u}G^{A\mu u}$	
		\mathcal{O}_{QuNeH1}	$(\overline{Q}u)(\overline{N^C}e)H$	\mathcal{O}_{NG2}	$lpha_3(\overline{N^C}N)G^A_{\mu u} ilde{G}^{A\mu u}$	
		\mathcal{O}_{QuNeH2}	$(\overline{Q}\sigma_{\mu\nu}u)(\overline{N^C}\sigma^{\mu\nu}e)H$			

Backup: Black box theorem of $0\nu\beta\beta$

 $\mathbf{0}\mathbf{\nu}\mathbf{\beta}\mathbf{\beta}$ decay guarantees a radiative contribution to the Majorana neutrino mass of a SM neutrino

Cutting at the thinner lines gives a contribution to ${\cal O}_{u \bar d e}^9 \propto u_R^2 \overline{d_R}^2 e_R^2$