Long-lived neutral fermions at the DUNE near detector in collaboration with Jordy de Vries, Herbi K. Dreiner, Zeren Simon Wang and Guanghui Zhou based on 2310.12392

Julian Y. Günther

October 9, 2024

	Jul	ian	Υ.	Gü	nt	her
--	-----	-----	----	----	----	-----

LLNF at DUNE-ND

October 9, 2024

1/18

Motivation - Heavy Neutral Leptons

The issue: massless neutrinos ν_L

- Neutrino oscillations necessitate massive neutrinos
- SM neutrinos ν_L are massless \hookrightarrow Right-handed neutrino fields absent in SM

Solution: Introduce N_{ν} SM gauge singlet ν_R

- Interacts with SM fields via a Higgs Yukawa coupling
- Possible Majorana mass term for ν_R

$$\mathcal{L}_{\min} = \mathcal{L}_{SM} - \left[\frac{1}{2}\bar{\nu}_R^c \bar{M}_R \nu_R + \bar{L}\tilde{H}Y_\nu \nu_R + \text{h.c.}\right], \quad \text{ where } H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h \end{pmatrix}$$

• After EWSB, neutrino masses can be written as

$$\mathcal{L}_{m_{\nu}} = -\frac{1}{2}\bar{N}^{C}M_{\nu}N + \text{h.c.}\,, \quad \text{ with } N = \begin{pmatrix} \nu_{L} \\ \nu_{R}^{c} \end{pmatrix} \text{ and } M_{\nu} = \begin{pmatrix} 0 & \frac{v}{\sqrt{2}}Y_{\nu}^{*} \\ \frac{v}{\sqrt{2}}Y_{\nu}^{\dagger} & \bar{M}_{R}^{\dagger} \end{pmatrix}$$

• ν_R are predicted in various other extensions of the SM

2/18

νSMEFT

At energy-scale Λ , introduce effective operators involving ν_R

$$\mathcal{L}_{\nu \text{SMEFT}} = \mathcal{L}_{\min} + \sum_{d>4} \sum_{i} C_{i}^{(d)} \mathcal{O}_{i}^{(d)}$$

Dimension-5 Operators, $N_{\nu}=1$

Two dimension-5 operators possible

$$\mathcal{L}_{\nu_L}^{(5)} = \epsilon_{kl} \epsilon_{mn} (L_k^T C_L^{(5)} C L_m) H_l H_n, \qquad \mathcal{L}_{\nu_R}^{(5)} = -\bar{\nu}_R^c C_R^{(5)} \nu_R H^{\dagger} H.$$

After EWSB, these operators contribute to Majorana masses of ν_L and ν_R .

$$M_{\nu} = \begin{pmatrix} -v^2 C_L^{(5)} & \frac{v}{\sqrt{2}} Y_{\nu}^* \\ \frac{v}{\sqrt{2}} Y_{\nu}^{\dagger} & \bar{M}_R^{\dagger} + v^2 C_R^{(5),\dagger} \end{pmatrix}$$

3/18

νSMEFT

Dimension-6 Operators, $N_{\nu} = 1$

Class 1	$\psi^2 H^3$	Class 4	ψ^4
$\mathcal{O}_{L\nu H}$	$(\bar{L}\nu_R)\tilde{H}(H^{\dagger}H)$	$\mathcal{O}_{du\nu e}$	$(\bar{d}_R\gamma^\mu u_R)(\bar{\nu}_R\gamma_\mu e)$
Class 2	$\psi^2 H^2 D$	$\mathcal{O}_{Qu\nu L}$	$(\bar{Q}u_R)(\bar{\nu}_R L)$
$\mathcal{O}_{H\nu e}$	$(\bar{\nu}_R \gamma^{\mu} e_R) (\tilde{H}^{\dagger} i D_{\mu} H)$	$\mathcal{O}_{L\nu Qd}$	$(\bar{L}\nu_R)\epsilon(\bar{Q}d_R)$
Class 3	$\psi^2 HF$	$\mathcal{O}_{LdQ\nu}$	$(\bar{L}d_R)\epsilon(\bar{Q}\nu_R)$
$\mathcal{O}_{\nu W}$	$(\bar{L}\sigma_{\mu\nu}\nu_R)\tau^I\tilde{H}W^{I\mu\nu}$	$\mathcal{O}_{L\nu Le}$	$(\bar{L}\nu_R)\epsilon(\bar{L}e_R)$
$\mathcal{O}_{\nu B}$	$(\bar{L}\sigma_{\mu\nu}\nu_R)\tilde{H}B^{\mu\nu}$		
			Yi Liao , Y

From ν SMEFT to ν LEFT

- Evolve operators from Λ to v (using one-loop QCD anomalous dimensions)
- At v, integrate out heavy SM fields, rotate to neutrino mass basis, and match to νLEFT

$$\mathcal{L}_{\nu \text{LEFT}} = \mathcal{L}_{SM} + \mathcal{L}_{m_{\nu}} + \underbrace{\sum_{i} c_{i}^{(6)} \mathcal{O}_{i}^{\prime(6)}}_{\mathcal{L}_{CC}^{(6)} + \mathcal{L}_{NC}^{(6)}}$$

• Evolve operators from v to Λ_{QCD}

Theoretical Scenarios - Minimal Scenario

Assume all $c_i^{(6)} = 0$, only active-sterile mixing

$$\nu_{L,k} = U_{kl}\nu_l$$

Focus on U_{e4} as a free parameter, treat $\nu_4 \approx \nu_R$:

$$L_{CC}^{(6)} \supset \sqrt{2}G_F c_{VLL,ij}^{(6)} \left(\bar{u}_L^i \gamma^\mu d_L^j\right) \left(\bar{e}_L \gamma_\mu \nu_R\right),$$

where $c_{VLL,ij}^{(6)} = -2V_{ij}U_{e4}$.

Theoretical Scenarios - Minimal Scenario

Assume all $c_i^{(6)} = 0$, only active-sterile mixing

$$\nu_{L,k} = U_{kl}\nu_l$$

Focus on U_{e4} as a free parameter, treat $\nu_4 \approx \nu_R$:

$$L_{CC}^{(6)} \supset \sqrt{2}G_F c_{VLL,ij}^{(6)} \left(\bar{u}_L^i \gamma^\mu d_L^j\right) \left(\bar{e}_L \gamma_\mu \nu_R\right),$$

where $c_{VLL,ij}^{(6)} = -2V_{ij}U_{e4}$.

HNL production

$$M^{\pm} \to N + e^{\pm}$$
$$M \to N + e^{\pm} + M'$$

HNL decay

$$N \to (e/\nu_e) + \text{mesons}$$

 $N \to \text{Leptons}$

Julian	Y	Günt	her
o a man		~~~~	

LLNF at DUNE-ND

October 9, 2024

5/18

Theoretical Scenarios - Minimal Scenario - Production

$$M^{\pm} \to N + e^{\pm}$$
$$M \to N + e^{\pm} + M'$$

October 9, 2024

∃ ⊳

• • • • • • • • • •

Theoretical Scenarios - Minimal Scenario - Decay

$$\begin{split} \Gamma_{N,\min} &= \Gamma_{N \to \text{leptons}} + \Theta \big(1 \,\text{GeV} - m_N \big) \,\Gamma_{N \to \text{single meson}} \\ &+ \Theta \big(m_N - 1 \,\text{GeV} \big) \, \big[1 + \Delta_{\text{QCD}}(m_N) \big] \,\Gamma_{N \to \bar{q}q} \,. \end{split}$$

Julian Y. Günther

October 9, 2024

臣

Displaced-vertex Signatures

Julian Y. Günther

LLNF at DUNE-ND

October 9, 2024

メロト メロト メヨト メヨト

7 / 18

æ

Displaced-vertex Signatures

Dedicated LLP detectors

Julian Y. Günther

LLNF at DUNE-ND

October 9, 2024

7 / 18

DUNE - Investigating Neutrino Oscillations

 $\mathbf{D} eep \ \mathbf{U} n derground \ \mathbf{N} eutrino \ \mathbf{E} x periment$

LBNF and DUNE: Conceptual Design Report, Vol. 1 arXiv:1601.05471

$\mathbf{Fermilab}$

- proton beam (60-120 GeV) colliding with a graphite target
 → 1.1 × 10²¹ POT per year
- secondary beam of charged particles focused with magnetic horns
- subsequent decays in decay pipe provide a focused neutrino beam

SURF

- 1300 km distance to Fermilab
- four 10 kt liquid argon TPCs
- large distance prohibits LLP detection

DUNE Near Detector (DUNE-ND)

Near detection system (NDS)	decay pipe length l	$194\mathrm{m}$
Monitor spectrum and flavor composition of	decay pipe radius r	$2\mathrm{m}$
neutrino beam	distance: target - decay pipe d	$27\mathrm{m}$
• Beamline measurement system	near detector length L	$6.4\mathrm{m}$
• Data aquisition system	near detector width H	$3.5\mathrm{m}$
• Fine-grained tracker	distance: target - near detector D	$574\mathrm{m}$

9 / 18

Simulation Procedure

Expected number of LLP events

• Number of produced LLPs

$$N_{M,N}^{\mathrm{prod}} = N_M \cdot \mathrm{Br}(M \to N + X)$$

• Probability of LLP decaying inside the detector

$$P_{M,i}\left[N \text{ in f.v.}\right] = \exp\left[-\frac{L_{T,i}}{\lambda_i}\right] \cdot \left(1 - \exp\left[-\frac{L_{I,i}}{\lambda_i}\right]\right)$$

 \hookrightarrow , $L_{T,i}$ and $L_{I,i}$ calculated based of production vertex and momenta.

 $\bullet\,$ Monte-Carlo Simulation using PYTHIA8 generating N_{MC} proton on target events

$$\left\langle P_M\left[N \text{ in f.v.}\right]\right\rangle = \frac{1}{N_{\rm MC}} \sum_{i}^{N_{\rm MC}} P_{M,i}\left[N \text{ in f.v.}\right]. \tag{1}$$

• Observed LLP events

$$N_{N}^{\rm obs} = {\rm Br} \left(N \to {\rm visible} \right) \cdot \sum_{M} N_{M,\,N}^{\rm prod} \left\langle P_{M} \left[N \text{ in f.v.} \right] \right\rangle$$

Results - Minimal Scenario

Free Parameters: U_{e4} , m_N Display three-event isocurves (95% C.L.) Brown-band: see-saw target region $\left|U_{e4}\right|^2 = m_{\nu}/m_N$ for $0.05\,\mathrm{eV} < m_{\nu} < 0.12\,\mathrm{eV}$.

æ

Theoretical Scenarios - Leptoquarks

Focus on leptoquark representation \tilde{R}_2 with SM gauge representation (3, 2, 1/6)

$$\mathcal{L}_{\mathrm{LQ}} = -y_{jk}^{RL} \bar{d}_{Rj} \tilde{R}_2^a \epsilon^{ab} L_{Lk}^b + y_i^{\overline{LR}} \bar{Q}_{Li}^a \tilde{R}_2^a \nu_R + \mathrm{h.c.}$$

Integrating out leptoquark, we get

$$C_{LdQ\nu,kji} = \frac{1}{m_{LQ}^2} y_i^{\overline{LR}} y_{jk}^{RL*}$$

In νLEFT

$$\begin{split} & L_{CC}^{(6)} \supset \sqrt{2} G_F \left(c_{SRR,ije}^{(6),CC} \left(\bar{u}_L^i d_R^j \right) \left(\bar{e}_L \nu_R \right) + c_{T,ije}^{(6),CC} \left(\bar{u}_L^i \sigma^{\mu\nu} d_R^j \right) \left(\bar{e}_L \sigma_{\mu\nu} \nu_R \right) \right), \\ & L_{NC}^{(6)} \supset \sqrt{2} G_F \left(c_{SRR,ije}^{(6),NC} \left(\bar{d}_L^i d_R^j \right) \left(\bar{e}_L \nu_R \right) + c_{T,ije}^{(6),NC} \left(\bar{d}_L^i \sigma^{\mu\nu} d_R^j \right) \left(\bar{e}_L \sigma_{\mu\nu} \nu_R \right) \right), \end{split}$$

where

$$\begin{split} c^{(6),CC}_{\mathrm{SRR},ije} = & 4 c^{(6),CC}_{\mathrm{T},ije} = \frac{v^2}{2} \frac{1}{m_{LQ}^2} y_i^{\overline{LR}} (y_{je}^{RL})^* \,, \\ c^{(6),NC}_{\mathrm{SRR},ije} = & 4 c^{(6),NC}_{\mathrm{T},ije} = - V_{li}^* c^{CC}_{\mathrm{SRR},lje} \,. \end{split}$$

Additionally, consider non-zero U_{e4} .

12 / 18

Theoretical Scenarios - Leptoquarks - Production

$$\begin{aligned} M^{\pm} \to N + e^{\pm} & M^{0} \to N + \nu_{e} \\ M \to N + e^{\pm} + M' & M \to N + \nu_{e} + M' \end{aligned}$$

October 9, 2024

Theoretical Scenarios - Leptoquark - Decay

 $\Gamma_{N,\mathrm{LQ}} = \Gamma_{N,\min} + \Gamma_{N \to \mathrm{single}\ \mathrm{meson},\mathrm{LQ}}$

October 9, 2024

14 / 18

Theoretical Scenarios - RPV-SUSY

 $\nu \mathrm{SMEFT}$ is **not** restricted to neutrinos, only SM gauge singlet fermions

- If lightest neutralino $\tilde{\chi}_1^0$ is very light, it is dominantly bino-like
- $\tilde{\chi}_1^0$ couples to fermion-sfermions pairs
- sfermions \tilde{f} couple to SM quarks and leptons via RPV-operator

 $\lambda_{ijk}' L_i Q_j \bar{D}_k$

Integrating out heavy sfermion fields, we obtain effective interactions similar to the leptoquark case

$$\begin{split} c^{(6),CC}_{\mathrm{SRR},ije} &= -\,36c^{(6),CC}_{\mathrm{T},ije} = \frac{3}{4}\frac{g'}{G_F}\frac{\left(\lambda'_{eij}\right)^*}{m^2_{SUSY}}\,,\\ c^{(6),NC}_{\mathrm{SRR},ije} &= -\,36c^{(6),NC}_{\mathrm{T},ije} = -V^*_{li}c^{CC}_{\mathrm{SRR},lje}\,. \end{split}$$

15 / 18

Results - Leptoquark Scenario

Free parameters: $c_{SRR,21e}^{(6),CC}$, $c_{SRR,11e}^{(6),CC}$, m_N Fixed U via see-saw relation $U_{e4} = \sqrt{m_{\nu}/m_N}$ with $m_{\nu} = 0.05 \,\mathrm{eV}$ and $m_{\nu} = 0.0 \,\mathrm{eV}$. Display three-event isocurves (95% C.L.)

Results - Leptoquark Scenario

Free parameters: $c_{SRR,21e}^{(6),CC}$, $c_{SRR,11e}^{(6),CC}$, m_N Fixed U via see-saw relation $U_{e4} = \sqrt{m_{\nu}/m_N}$ with $m_{\nu} = 0.05 \,\mathrm{eV}$ and $m_{\nu} = 0.0 \,\mathrm{eV}$. Display three-event isocurves (95% C.L.)

Conclusion

- Studied long-lived neutral fermions in an effective field theory approach. \hookrightarrow Heavy neutral leptons ν_R .
 - \hookrightarrow Light neutralinos $\tilde{\chi}_1^0$ in RPV-SUSY.
- Performed Monte-Carlo simulations to obtain signal-event rates of rare decays
- Obtained DUNEs capability to detect LLNFs
 → compared it to LLP detector proposals at the LHC.
 - \hookrightarrow DUNEs sensitivity complements LHC proposals

Thank you!