Boosting sterile neutrino dark matter production

Stefan Vogl

based on [JHEP 03 \(2024\) 032](https://doi.org/10.1007/JHEP03(2024)032) [\[arXiv:2307.15565\]](https://arxiv.org/abs/2307.15565) with M. Dias Astros

universitätfreiburg

Sterile neutrino dark matter

- $▶$ sterile neutrino \rightarrow gauge singlet fermion
- \triangleright interacts with SM via mixing with regular neutrinos interesting since
	- \triangleright one of the most minimal SM extensions
	- \triangleright DM candidate since it is naturally dark

with oscillations alone (Dodelson-Widrow mechanism)

- ▶ right amount of DM for O(*keV*) masses
- \triangleright decays to photon and SM neutrino (X-ray lines)
- \triangleright tends to be warm (i.e. affect structure formation)
- ▶ current status: excluded

Self-interacting sterile neutrinos

Minimal setup for a more complex dark sector:

- ▶ add one scalar singlet ϕ (one new parameter: m_{ϕ})
- ▶ ^ν*^s* mixing with SM neutrinos remains only connection between DM and SM
- \blacktriangleright ϕ interacts with ν_s (one parameter: Yukawa coupling *y*)

see also Hansen and SV '17, Fuller and Johns '19, Bringmann et al '22

Production in early Universe

sterile neutrinos are produced by "freeze-in" with some extra hoops Master equation for production

evolution controlled by

- \triangleright effective in medium oscillation probabilities, i.e. term in brackets
- ▶ total interaction rate of neutrinos, ^Γ*^t*
- ▶ dark sector thermalization rate, *^C^s*

Production from oscillations

freeze-in type production

- ▶ no sterile neutrinos at high *T*
- ▶ most relevant production at *T* ∼ 200 to 300 MeV
- ▶ yield constant below ∼ 100 MeV

Simple modification ...

... with rich effects in sterile neutrino production

▶ large self scattering rate for non-vanishing sterile neutrino population

 \blacktriangleright heuristic: replace one of the inital states with SM neutrino via mixing

> the more sterile there are the more they scatter \Rightarrow self-accelerating production rate

Accelerated production

masses: $m_s = 12$ keV, $m_\phi = 1.5$ GeV mixing $\sin^2(2\theta) = 5\times 10^{-13}$ and coupling $y\approx 7\times 10^{-2}$

- ▶ high *T*: DW production
- ▶ intermediate *T*: self-interaction pick up and pull in more stuff
- $▶$ low *T*: production shuts of when ϕ becomes massive

S. Vogl (University of Freiburg) BLV, Karlsruhe, 9.10.24 8

... with rich effects in sterile neutrino production

 \blacktriangleright new physics contribution to thermal potentials

▶ cancelation in denominator of effective oscillation probability for heavy ϕ and large enough *y*

 \Rightarrow resonant enhancement of the production rate

Resonance for large *m*^ϕ

large jump in relic density for very small change in coupling \Rightarrow highly tuned, typically either too little or too much DM for large m_{ϕ}

... with rich effects in sterile neutrino production

▶ number changing processes in the sterile neutrino sector

 \Rightarrow allows for additional DM production and independent evolution of dark sector temperature

Thermalization

- \blacktriangleright thermalization leads to a significant decrease in the dark sector temperature early on
- more neutrinos pulled in via self-scattering later

Can this be tested?

Parameter space of sterile neutrino dark matter

constraints from

- $▶$ structure formation (Lyman- α forest)
- \blacktriangleright X-ray satellites

S. Vogl (University of Freiburg) BLV, Karlsruhe, 9.10.24 14

Conclusions

- \blacktriangleright keV sterile neutrinos are an attractive dark matter candidate
- ▶ large enhancement of production from interactions in dark sector
- ▶ impact on phenomenology mixed
	- \blacktriangleright X-ray bounds less constraining
	- ▶ structure formation bounds similar or stronger