Boosting sterile neutrino dark matter production

Stefan Vogl

based on JHEP 03 (2024) 032 [arXiv:2307.15565] with M. Dias Astros

universität freiburg

Sterile neutrino dark matter

- Sterile neutrino → gauge singlet fermion
- ▶ interacts with SM via mixing with regular neutrinos interesting since
 - one of the most minimal SM extensions
 - DM candidate since it is naturally dark

with oscillations alone (Dodelson-Widrow mechanism)

- ▶ right amount of DM for O(keV) masses
- decays to photon and SM neutrino (X-ray lines)
- tends to be warm (i.e. affect structure formation)
- current status: excluded

Self-interacting sterile neutrinos

Minimal setup for a more complex dark sector:

- add one scalar singlet ϕ (one new parameter: m_{ϕ})
- ν_s mixing with SM neutrinos remains only connection between DM and SM
- φ interacts with ν_s
 (one parameter: Yukawa coupling y)

see also Hansen and SV '17, Fuller and Johns '19, Bringmann et al '22

Production in early Universe

sterile neutrinos are produced by "freeze-in" with some extra hoops Master equation for production

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\rm eff}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$
 Sterile's distribution function Vacuum oscillation frequency $\sim \frac{m_s^2}{2p}$ Vacuum mixing requency $\sim \frac{m_s^2}{2p}$ Vacuum mixing frequency $\sim \frac{m_s^2}{2p}$ Vacuum mixing $\sim \frac{$

evolution controlled by

- effective in medium oscillation probabilities, i.e. term in brackets
- ▶ total interaction rate of neutrinos, Γ_t
- ► dark sector thermalization rate, C_s

Production from oscillations

freeze-in type production

- no sterile neutrinos at high T
- most relevant production at T ~ 200 to 300 MeV
- ▶ yield constant below ~ 100 MeV

Simple modification ...

... with rich effects in sterile neutrino production

large self scattering rate for non-vanishing sterile neutrino population

heuristic: replace one of the inital states with SM neutrino via mixing

the more sterile there are the more they scatter

⇒ self-accelerating production rate

Accelerated production

masses:
$$m_{\rm s}=$$
 12 keV, $m_{\phi}=$ 1.5 GeV mixing $\sin^2(2\theta)=$ 5 × 10⁻¹³ and coupling $y\approx$ 7 × 10⁻²

- ▶ high T: DW production
- ▶ intermediate *T*: self-interaction pick up and pull in more stuff
- ▶ low T: production shuts of when φ becomes massive

... with rich effects in sterile neutrino production

new physics contribution to thermal potentials

- \blacktriangleright cancelation in denominator of effective oscillation probability for heavy ϕ and large enough y
 - \Rightarrow resonant enhancement of the production rate

Resonance for large m_{ϕ}

large jump in relic density for very small change in coupling \Rightarrow highly tuned, typically either too little or too much DM for large m_ϕ

... with rich effects in sterile neutrino production

number changing processes in the sterile neutrino sector

⇒ allows for additional DM production and independent evolution of dark sector temperature

Thermalization

- thermalization leads to a significant decrease in the dark sector temperature early on
- more neutrinos pulled in via self-scattering later

Can this be tested?

Parameter space of sterile neutrino dark matter

constraints from

- ightharpoonup structure formation (Lyman- α forest)
- X-ray satellites

Conclusions

- keV sterile neutrinos are an attractive dark matter candidate
- large enhancement of production from interactions in dark sector
- impact on phenomenology mixed
 - X-ray bounds less constraining
 - structure formation bounds similar or stronger