LNV@FCC-ee and hh BLV 2024, Karlsruhe, Germany

Richard Ruiz

Institute of Nuclear Physics - Polish Academy of Science (IFJ PAN)

10 September 2024

LNV@FCC - BLV24

ELE DOG

apologies: this is only a subset of available results

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

< □ ▶ < @ ▶ < E ▶ < E ▶ 된 = りへで LV24 2 / 38 the big picture

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

 $m_{\nu} \neq 0 \implies$ new physics must exist

LNV@FCC - BLV24

4 / 38

R. Ruiz (IFJ PAN

LNV@FCC - BLV24

 $m_{\nu} \neq 0$ + renormalizability + gauge inv. \implies new particles

New particles must couple to Φ_{SM} and L, often inducing non-conservation of lepton number and/or lepton flavor

R. Ruiz (IFJ PAN)

LNV@FCC - BLV24

< □ ▶ < @ ▶ < E ▶ < E ▶ E = のへで M24 4 / 38

Solution to $m_{\nu} \neq 0$ can be realized in *many* ways!

Minkowski ('77); Yanagida ('79); Glashow & Levy ('80); Gell-Mann et al., ('80); Mohapatra & Senjanović ('82); + many others

New particles must couple to Φ_{SM} and L, often inducing lepton number violation (LNV) and lepton flavor violation (LFV) in experiments

R. Ruiz (IFJ PAN

LNV@FCC - BLV24

broad implications for laboratory-based physics

Many complementary ways to explore consequences of m_{ν}

- short and long baseline experiments and νDIS facilities \odot
- rare decay and *in situ* experiments ©
- colliders and ℓ-DIS facilities ℓℓ, ℓh, hh ☺

R. Ruiz (IFJ PAN)

★ ≥ ► < ≥ ►</p>
6 / 38

SIN NOR

European Strategy Update (2024-)

Ongoing discussions on European HEP program and future initiatives

European Strategy Update ('20); Snowmass ('21) [2209.14872]; P5 ('23) [2407.19176]

Future Circular Collider (FCC) program

- phase 1: e^+e^- collisions
- phase 2: pp/pA/AA collisions

Topics of discussions:

- ullet anticipated timeline of High Luminosity LHC (HL-LHC) milestones \odot
- objectives/milestones and timeline of FCC-ee ©
- \bullet objectives/milestones and timeline of FCC-hh \odot
- cost/benefit of accelerated/alternative timelines ©

1 3 1 4 3 1 3 1 3 4 4 5 1 3 4 6 A

collider strategy: infer Majorana nature¹ of ν from LNV via new particles

right-handed neutrinos²

 $^{^2}$ For reviews at colliders, see Cai, Han, Li, RR [1711.02180] and Pascoli, RR, Weiland [1812.08750]

1 slide for non-experts

LNV@FCC – BLV24

< □ ▶ < □ ▶ < ∃ ▶ < ∃ ▶ < ∃ ▶ ∃ ○ ○ ○
 .V24 11 / 38

To generate Dirac masses for ν like other SM fermions, we need ν_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + H.c. = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} \nu_{R} + H.c.$$
$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{=m_{D}} \overline{\nu_{L}} \nu_{R} + H.c. + \dots$$

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

To generate Dirac masses for ν like other SM fermions, we need ν_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + H.c. = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} \nu_{R} + H.c.$$
$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{=m_{D}} \overline{\nu_{L}} \nu_{R} + H.c. + \dots$$

 ν_R do not exist in the SM, so hypothesize that they do and $\nu_R = \nu_R^c$:

< @ ▶ < 분 ▶ < 분 ▶ 분 1 ○ 오 (~ 12 / 38 To generate Dirac masses for ν like other SM fermions, we need ν_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + H.c. = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} \nu_{R} + H.c.$$
$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{=m_{D}} \overline{\nu_{L}} \nu_{R} + H.c. + \dots$$

 ν_R do not exist in the SM, so **hypothesize** that they do and $\nu_R = \nu_R^c$:

After diagonalizing the mass matrix, identify ν_L (chiral eigenstate) in the SM as a linear combination of mass eigenstates:

technical comments on high- and low-scale Seesaws (for experts)

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

<ロト < 部ト < 目ト < 目ト 三日 のへで LV24 13 / 38 In pure Type I scenarios (SM+ ν_R), tiny m_{ν} obtained in two ways:

greatly clarified by Pascoli, et al, [1712.07611]

~

High-scale seesaw:

$$\Lambda_{LNV} \gg y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim m_D \left(\frac{m_D}{\Lambda_{LNV}} \right), \ m_N \sim \Lambda_{LNV}$$

Generically leads to decoupling of high-mass N and LNV from colliders

2 Low-scale seesaw:

$$\Lambda_{LNV} \ll y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim \Lambda_{LNV} \left(\frac{m_D}{m_R} \right)^2, \ m_N \sim m_R$$

Known also in literature as Inverse Seesaw, Linear Seesaw, Protective Symmetries, etc.

R. Ruiz (IFJ PAN

LNV@FCC – BLV24

<ロト < 部ト < 言ト < 言ト 三 言 の < で V24 14 / 38 In pure Type I scenarios $(SM + \nu_R)$, tiny m_{ν} obtained in two ways:

greatly clarified by Pascoli, et al, [1712.07611]

2

High-scale seesaw:

$$\Lambda_{LNV} \gg y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim m_D \left(\frac{m_D}{\Lambda_{LNV}} \right), \ m_N \sim \Lambda_{LNV}$$

Generically leads to decoupling of high-mass N and LNV from colliders

Low-scale seesaw:

$$\Lambda_{LNV} \ll y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim \Lambda_{LNV} \left(\frac{m_D}{m_R} \right)^2, \ m_N \sim m_R$$

Known also in literature as Inverse Seesaw, Linear Seesaw, Protective Symmetries, etc.

Corollary #1: In low-scale Type I, if $m_{\nu} \approx 0$ on scale of expt. i.e., $(m_{\nu}^2/Q^2)^k \approx 0$ \implies approx. *L* conservation

Pilaftsis, et al [hep-ph/9901206]; Kersten & Smirnov [0705.3221]; Pascoli, et al, [1712.07611]; w/ Pascoli [1812.08750]

In pure Type I scenarios $(SM + \nu_R)$, tiny m_{ν} obtained in two ways:

greatly clarified by Pascoli, et al, [1712.07611]

2

High-scale seesaw:

$$\Lambda_{LNV} \gg y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim m_D \left(\frac{m_D}{\Lambda_{LNV}} \right), \ m_N \sim \Lambda_{LNV}$$

Generically leads to decoupling of high-mass N and LNV from colliders

Low-scale seesaw:

$$\Lambda_{LNV} \ll y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim \Lambda_{LNV} \left(\frac{m_D}{m_R} \right)^2, \ m_N \sim m_R$$

Known also in literature as Inverse Seesaw, Linear Seesaw, Protective Symmetries, etc.

Corollary #1: In low-scale Type I, if $m_{\nu} \approx 0$ on scale of expt. i.e., $(m_{\nu}^2/Q^2)^k \approx 0$ \implies approx. *L* conservation

Pilaftsis, et al [hep-ph/9901206]; Kersten & Smirnov [0705.3221]; Pascoli, et al, [1712.07611]; w/ Pascoli [1812.08750]

Corollary #2: Collider-scale LNV via N_i with $m_N \gtrsim M_W$ \implies **larger active particle spectrum!**

R. Ruiz (IFJ PAN

LNV@FCC - BLV24

<ロ > < 回 > < 回 > < 三 > < 三 > 三 = う へ (* V24 14 / 38

RR [1703.04669]

the benchmark setup

LNV@FCC – BLV24

< □ ▶ < □ ▶ < ≡ ▶ < ≡ ▶ < ≡ ▶ Ξ □

.V24
15 / 38

For *discovery purposes*, paramerize active-sterile neutrino mixing :

Atre, Han, et al [0901.3589]

$$\underbrace{\nu_{\ell L}}_{\text{flavor basis}} \approx \underbrace{\sum_{m=1}^{3} U_{\ell m} \nu_m + V_{\ell m'=4} N_{m'=4}}_{\text{mass basis. can be Dirac or Maj.}}$$

(neglect heavier
$$N_{m'}$$
)

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

< □ ▶ < 큔 ▶ < 글 ▶ < 글 ▶ 로 말 ♥ 오... LV24 16 / 38 For *discovery purposes*, paramerize active-sterile neutrino mixing :

Atre, Han, et al [0901.3589]

$$\underbrace{\nu_{\ell L}}_{\text{flavor basis}} \approx \underbrace{\sum_{m=1}^{3} U_{\ell m} \nu_m + V_{\ell m'=4} N_{m'=4}}_{\text{mass basis. can be Dirac or Maj.}} \quad (\text{neglect heavier } N_{m'})$$

The SM W couplings to **leptons** in the **flavor basis** are

$$\mathcal{L}_{\text{Int.}} = -\frac{g_W}{\sqrt{2}} W^-_{\mu} \sum_{\ell=e}^{\tau} \left[\overline{\ell} \gamma^{\mu} P_L \nu_{\ell} \right] + \text{H.c.}, \qquad \text{where } P_L = \frac{1}{2} (1 - \gamma^5)$$

For *discovery purposes*, paramerize active-sterile neutrino mixing :

Atre, Han, et al [0901.3589]

$$\underbrace{\nu_{\ell L}}_{\text{flavor basis}} \approx \underbrace{\sum_{m=1}^{3} U_{\ell m} \nu_m + V_{\ell m'=4} N_{m'=4}}_{\text{mass basis. can be Dirac or Maj.}} \quad (\text{neglect heavier } N_{m'})$$

The SM W couplings to **leptons** in the **flavor basis** are

$$\mathcal{L}_{\text{Int.}} = -\frac{g_W}{\sqrt{2}} W^-_\mu \sum_{\ell=e}^{\tau} \left[\overline{\ell} \gamma^\mu P_L \nu_\ell \right] + \text{H.c.}, \quad \text{where } P_L = \frac{1}{2} (1 - \gamma^5)$$

 \implies *W* couplings to ν and *N* in the **mass basis** are

$$\mathcal{L}_{\text{Int.}} = -\frac{g_W}{\sqrt{2}} W_{\mu}^{-} \sum_{\ell=e}^{\tau} \left[\overline{\ell} \gamma^{\mu} P_L \left(\sum_{m=1}^{3} \frac{U_{\ell m} \nu_m}{\nu_m} + \frac{V_{\ell N} N}{N} \right) \right] + \text{H.c.}$$

 $\implies N \text{ is accessible through } W/Z/h \text{ bosons}$

heavy neutrinos@FCC-ee

Community Message: Current + next-gen. facilities can probe *simplest* ($m_{\nu_1} = 0$) leptogenesis scenario w/ ν_R Abdullahi, et al [2203.08039]; w/ Alimena, et al [2203.05502]

R. Ruiz (IFJ PAN

LNV@FCC – BLV24

Polarization measurements are priority: subtle helicity inversion \implies differences in kinematics for Dirac LNC vs Majorana LNC+LNV

Kayser ('82), Mohapatra & Pal ('98), Denner, et al (NPB'92, PLB'92); Han, RR, et al [1211.6447]; RR [2008.01092]

 $\theta_{ee} = \text{opening between outgoing } \ell^+ \ell^-$

 $- \text{Dirac} = \text{LNC} \\ - \text{Majorana} = \text{LNC} + \text{LNV}$

R. Ruiz (IFJ PAN

LNV@FCC – BLV24

18 / 38

= 900

NEW: update with FCC-ee reconstruction framework for two- N_k setup

Ajmal, et al [2410.03615]

what about heavier N?

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

heavy neutrinos@FCC-hh

Plotted: Normalized production rate $(\sigma/|V|^2)$ vs m_N

heavy neutrinos@FCC-hh

Only a few results. See the big paper for various flavor, Dirac vs Majorana, and \sqrt{s} permutations [1812.08750] \sim

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

22 / 38

LNV@FCC – BLV24

Type III Seesaw postulates $SU(2)_L$ letponic triplet (T^+, N^0, T^-)

lots of rich physics Bajc, Senjanovic [hep-ph/0612029]; PF Perez [hep-ph/0702287]; Abada, et al [0707.4058, 0803.0481]; +++

- heavy electron and heavy neutrino carry weak isospin charges
- \implies couples to $W/Z/\gamma$ via gauge charges
- typical decay modes T^{\pm} , $N \rightarrow \ell^{\pm}/\nu + V$

w/ Cai, Han, Li [1711.02180]

R. Ruiz (IFJ PAN

LNV@FCC - BLV24

25 / 38

R. Ruiz (IFJ PAN)

LNV@FCC - BLV24

< □ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 三目目 のへで V24 26 / 38

Hypothesize a scalar SU(2)_L triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta\Phi} \ni \mu_{h\Delta} \Big(\Phi_{\text{SM}}^{\dagger} \hat{\Delta} \cdot \Phi_{\text{SM}}^{\dagger} + \text{H.c.} \Big)$$

R. Ruiz (IFJ PAN)

LNV@FCC - BLV24

<ロト < 昂ト < 言ト < 言ト 三日 のへの V24 26 / 38

Hypothesize a scalar SU(2)_L triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta\Phi} \ni \mu_{h\Delta} \Big(\Phi_{\text{SM}}^{\dagger} \hat{\Delta} \cdot \Phi_{\text{SM}}^{\dagger} + \text{H.c.} \Big)$$

The mass scale $\mu_{h\Delta}$ breaks lepton number, and induces $\langle \Delta \rangle \neq 0$:

$$\langle \hat{\Delta}
angle = \mathbf{v}_{\Delta} pprox rac{\mu_{h\Delta} v_{\rm EW}^2}{\sqrt{2} m_{\Delta}^2}$$

Hypothesize a scalar SU(2)_L triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta\Phi} \ni \mu_{h\Delta} \Big(\Phi_{\text{SM}}^{\dagger} \hat{\Delta} \cdot \Phi_{\text{SM}}^{\dagger} + \text{H.c.} \Big)$$

The mass scale $\mu_{h\Delta}$ breaks lepton number, and induces $\langle \Delta \rangle \neq 0$:

$$\langle \hat{\Delta}
angle = \mathbf{v}_{\Delta} pprox rac{\mu_{h\Delta} v_{\rm EW}^2}{\sqrt{2} m_{\Delta}^2}$$

 \implies left-handed Majorana masses for ν

$$\Delta \mathcal{L} = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \overline{L^c} \hat{\Delta} L = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \left(\overline{\nu^{jc}} \quad \overline{\ell^{jc}} \right) \begin{pmatrix} 0 & 0 \\ v_{\Delta} & 0 \end{pmatrix} \begin{pmatrix} \nu^{i} \\ \ell^{i} \end{pmatrix}$$
$$\ni -\frac{1}{2} \underbrace{\left(\sqrt{2} y_{\Delta}^{ij} v_{\Delta} \right)}_{=m_{\nu}^{ij}} \overline{\nu^{jc}} \nu^{i}$$

Few free parameters \implies rich experimental predictions

Fileviez Perez, Han, Li, et al, [0805.3536], Crivellin, et al [1807.10224], Fuks, Nemevšek, RR [1912.08975] + others

 Example: △ decay rates encode inverse (IH) vs normal (NH) ordering of light neutrino masses

 $\Gamma(\Delta^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \sim y_\Delta^{ij} \sim (U_{\rm PMNS}^* \tilde{m}_\nu^{\rm diag} U_{\rm PMNS}^{\dagger})_{ij}$

R. Ruiz (IFJ PAN

27 / 38

Type II@FCC-hh

R. Ruiz (IFJ PAN

28 / 38

Type II@FCC-hh

R. Ruiz (IFJ PAN

LNV@FCC – BLV24

28 / 38

Type II@FCC-hh

< □ ▶ < 큔 ▶ < 글 ▶ < 글 ▶ 로 말 ♥ 오 ↔ LV24 30 / 38

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

LNV@FCC – BLV24

<ロ > < 日 > < 日 > < 日 > < 日 > < 日 > 三日 のへで V24 31 / 38

R. Ruiz (IFJ PAN

)

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

Hypothesize two scalar SU(2)_L singlets k, h with weak hypercharge Y = -2, -1 ($\implies Q_k = -2, Q_h = -1$) with lepton number L = -2

・ロト < 同ト < 目ト < 目ト < 目上 のQ()

R. Ruiz (IFJ PAN)

LNV@FCC - BLV24

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

Hypothesize two scalar SU(2)_L singlets k, h with weak hypercharge Y = -2, -1 ($\implies Q_k = -2, Q_h = -1$) with lepton number L = -2

$$\mathcal{L}_{\rm ZB} = \mathcal{L}_{\rm SM} + (D_{\mu}k)^{\dagger} (D^{\mu}k) + (D_{\mu}h)^{\dagger} (D^{\mu}h) + (\mu \mu h k^{\dagger} + \text{H.c.})$$

$$\begin{bmatrix} f_{ij} \ \overline{\tilde{L}^{i}} L^{j} h^{\dagger} + g_{ij} \ \overline{(e_{R}^{c})^{i}} e_{R}{}^{j} k^{\dagger} + \text{H.c.} \end{bmatrix} + \dots$$

The mass scale $\mu_{\underline{l}}$ breaks lepton number, and induces $m_{\nu} \neq 0$:

R. Ruiz (IFJ PAN

LNV@FCC – BLV24

31 / 38

Few free parameters \implies rich experimental predictions

Nebot, et al [0711.0483]; Ohlsson, Schwetz, Zhang [0909.0455]; Herrero-Garcia, Nebot, Rius, et al [1402.4491]; + others

• E.g., $k^{\pm\pm}$, h^{\pm} couplings to leptons encode oscillation physics

NH & IH, $\sin^2(\theta_{23}) < 0.5$

R. Ruiz (IFJ PAN

32 / 38

Zee-Babu@FCC-hh

R. Ruiz (IFJ PAN

LNV@FCC – BLV24

so much not covered

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

<ロ > < 部 > < 目 > < 目 > 三日 の Q (* LV24 34 / 38

Unambiguous data that neutrino have nonzero masses

- general arguments, more new physics must exist (unclear what kind)
- reach of FCC-ee/hh known for many popular Seesaw models

(more work still needed!)

ELE SQC

until clear guidance from TH or EXP, important to explore broadly

for a review, see Cai, Han, Li, RR [1711.02180] (1日) (1日) (1日)

35 / 38

one more thing

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

< □ ▶ < □ ▶ < ≡ ▶ < ≡ ▶ ≤ ≡ ▶ ○ < ○

LV24 36 / 38

senior postdoc vacancy in Krakow

3-year Adv/Senior Postdoctoral Researcher in Theoretical Particle Physics

Cracow, INP · Europe

hep-ph	hep-th	nucl-th	PostDoc
--------	--------	---------	---------

① Deadline on Nov 15, 2024

Job description: Job Title: Adv/Senior Postdoctoral Researcher

The Department of Theoretical Particle Physics (NZ42) at the Institute of Nuclear Physics – Polish Academy of Sciences (IFJ PAN) in Krakow, Pola postdoctoral appointment ("adjunct" in Polish) in the group of Prof. Richard Ruiz.

inspirehep.net/jobs/2829053

backup

R. Ruiz (IFJ PAN

LNV@FCC – BLV24

1/9

The Black Box Theorem

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

2 / 9

In '82, Schechter & Valle published (PRD'82) a seminal finding:

- Suppose $0\nu\beta\beta$ is mediated within "a 'natural' gauge theory" $\Delta L = -2 \text{ process}$
- *u*, *d* and *e*⁻ all carry weak charges

FIG. 1. Diagrams for neutrinoless double- β decay in an SU(2)×U(1) gauge theory. The standard diagram is Fig. 1(a). It is the only one which contains a virtual neutrino (of four-momentum p). d and u are the down and up quarks.

EL SQA

In '82, Schechter & Valle published (PRD'82) a seminal finding:

• Suppose $0\nu\beta\beta$ is mediated within "a 'natural' gauge theory" $\Delta L = -2 \text{ process}$

• *u*, *d* and *e*⁻ all carry weak charges

- always possible to build a many-loop,
 2-point graph with external ν_L, ν^c_L
- $0\nu\beta\beta$ generates a Majorana mass for ν
- holds generally for other $\Delta L \neq 0$ process for further discussions, see:

Hirsch, et al [hep-ph/0608207] and Pascoli, et al [1712.07611]

FIG. 2. Diagram showing how any neutrinoless double- β decay process induces a \overline{v}_e -to- v_e transition, that is, an effective Majorana mass term.

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

< □ > < @ > < E > < E > E = りへで LV24 4 / 9

The Dirac-Majorana Confusion Theorem

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

In '82, Kayser also published (PRD'82) a seminal finding:

refined later by Mohapatra & Pal ('98)

The helicity amplitude for the LNC process $W^+ \rightarrow \ell_1^+ \ell_2^- f \overline{f'}$ is

 $\mathcal{M}_{LNC} = \varepsilon_{\mu} T^{\rho\mu}_{LNC} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{1}f_{2}} \mathcal{D}(\rho_{\nu})$

Intuition: successive LH chiral interactions \implies LH helicity eigenstate

$$T_{LNC}^{\rho\mu} = \overline{u_L}(p_2)\gamma^{\rho}P_L \times (\underbrace{p_{\nu}}_{\text{LH helicity state}} + \underbrace{m_{\nu}}_{P_L m_{\nu} P_R = 0}) \times \gamma^{\mu}P_L v_R(p_1)$$
$$\implies \mathcal{M}_{LNC} \sim \frac{p_{\nu}}{p_{\nu}^2 - m_{\nu}^2}$$

R. Ruiz (IFJ PAN)

LNV@FCC - BLV24

6/9

The helicity amplitude for the LNV process $W^+ \rightarrow \ell_1^+ \ell_2^+ \overline{f} f'$ is

 $\mathcal{M}_{LNV} = \varepsilon_{\mu} T^{\rho\mu}_{LNV} \Delta^{W}_{\nu\rho} J^{\nu}_{f_2 f_1} \mathcal{D}(p_{\nu})$

Intuition: CPT Theorem \implies C-inversion = PT-inversion

$$T_{LNV}^{\rho\mu} = \overline{u_R}(p_2)\gamma^{\rho} \underbrace{P_R}_{CPT: \ P_L \to P_R} \times (\underbrace{p_{\nu}}_{P_R \ p_{\nu} \ P_R=0} + \underbrace{m_{\nu}}_{\text{RH helicity state}}) \times \gamma^{\mu} P_L v_R(p_j)$$
$$\implies \mathcal{M}_{LNV} \sim \frac{m_{\nu}}{p_{\nu}^2 - m_{\nu}}$$

Confusion Theorem: In SM + Majorana ν , the rate of LNV~ $\mathcal{O}(m_{\nu})$; in the limit where $(m_{\nu}^2/M_W^2) \rightarrow 0$, Dirac behavior recovered

holds for other gauge theories with Majorana fermions Han, RR, et al [1211.6447]; RR [2008.01092]

R. Ruiz (IFJ PAN)

LNV@FCC – BLV24

7/9

▶ 三回 のへの

technical comments on high- and low-scale Seesaws (for experts)

For super experts

What about quasi-degenerate Majorana neutrinos?

Wolfenstein ('81), Petcov ('82)

Low-scale Seesaws assume SM+ ν_R +S \implies 3 mass states per generation:

(for a review, see C. Weiland's thesis [1311.5860])

$$m_{
u} \sim \underbrace{\bigwedge_{LNV}}_{\text{this is small!!}} \left(\frac{m_D}{m_R}\right)^2 \qquad m_{N_{1,2}} \sim \pm \left(\sqrt{m_R^2 + m_D^2} \mp \mathcal{O}(\bigwedge_{LNV})\right)$$

三日 のへの

For super experts

What about quasi-degenerate Majorana neutrinos?

Wolfenstein ('81), Petcov ('82)

Low-scale Seesaws assume $SM + \nu_R + S \implies 3$ mass states per generation:

(for a review, see C. Weiland's thesis [1311.5860])

In $m_{\nu} \rightarrow 0$ limit (typical for LHC), $m_{N_2} \rightarrow m_{N_1}$ and $\Delta \phi \rightarrow \pi$:

2 quasi-degenerate, Majorana N_i with opposite CP phase ≈ 1 Dirac N_i

R. Ruiz (IFJ PAN

LNV@FCC – BLV24

9 / 9