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Type-I Seesaw
Mikowski (1977), Gell-Mann, et al. (1979), Mohapatra and Senjanović (1979), Yanagida (1980), Glashow (1980), …

Neutral fermion singlets can explain the origin of neutrino masses, BAU, and
dark matter.

New interactions before SSB

L = LSM + i N̄R /∂ NR − L̄L · H̃ Y NR − 1

2
N̄C

R MM NR + H.c. ,

After SSB, N and ν mix in their mass terms

Lmass = −1

2

(
ν̄L N̄C

R
)( 0 MD
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D MM

)(
νC

L
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)
+ H.c. .

Diagonalization gives mass spectrum

Mν ' −MT
D

1

MN
MD , MN ' MM .

MD = v√
2 Y
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Seesaw parameters
Interactions between N and the rest of SM particles is proportional to the
mixing angle Θ

Θ = MD
1

MN
.

Naively, the mixing angle should be proportional to Θ ∝
√

mν/MN . However,
we can choose parametrizations of that preserve small mν and large Θ.
Casas-Ibarra parametrization [Casas and Ibarra (2001)]

Θ = i VPMNS √mν O 1√
MN

,

where O is an arbitrary (semi-)orthogonal matrix.
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Current constrains
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How to search for heavier HNLs?

• Not feasible to directly search for heavy HNLs, can only place bounds
indirectly

• HNLs can mediate cLFV processes that are not allowed in the SM, such
as

• µ → eγ
• µ → eee
• µ → e conversion in nucleus

• The non-observation of such processes places bounds on HNL parameters
• Not a new idea, decay rates have been known for years

Petcov (1976), Bilenky, et al (1977), Marciano and Sanda (1977), Minkowski (1977), Cheng and Li (1980), Lim and Inami (1981), Langacker

and London (1988), Pilaftsis (1992), Ilakovac and Pilaftsis (1994), Chang, et al. (1994), Pilaftsis (1998), Ioannisian and Pilaftsis (1999),

Illana, et al. (1999), Illana and Riemann (2000), Pascoli, et al. (2003), Pascoli, et al. (2003), Pilaftsis and Underwood (2005), Deppisch, et al.

(2005), …
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Non-decoupling and new bounds
However, in presenting these bounds, the recent literature have not properly
taken into consideration the effect of non-decoupling diagrams. The shape of
the decay width of some cLFV should be

Γ ∝

∣∣∣∣∣Θ2 +Θ4

(
MN

MW

)2
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2

,
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Where does the perturbativity line come from?
We can get a measure of the perturbativity of a theory by using perturbative
unitarity. The unitarity condition of the S matrix, brings certain condition to
scattering amplitudes

M = 16π
∑

J

(2J + 1)dJ
µi,µf aJ ,

aJ are the partial waves (or the scattering amplitude with transferred J
angular momentum). On 2 → 2 elastic scatterings, unitarity demands the
inequalities∣∣∣aJ

∣∣∣ ≤ 1 , 0 ≤
∣∣∣Im(aJ)

∣∣∣ ≤ 1 ,
∣∣∣Re(aJ)

∣∣∣ ≤ 1

2
.

Any scattering amplitude should automatically satisfy it. However, for
tree-level computations alone cannot properly satisfy them for all coupling
constants.
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Yukawa interactions in the limit s → ∞

We shall do the same analysis on the minimal type-I seesaw model. There are
a few theoretical caveats
• In the limit s → ∞, we can take advantage of the Goldstone equivalence

theorem, and only consider interactions with scalars

M(W±
L ,ZL, . . . ) = (i C)n M(φ±, φZ, . . . )

Only interactions that matter:

Lint. = −ν̄ Y PR N + ¯̀Y PR N φ− + H.c.

• Multiple flavors of leptons and generations of HNLs complicate things

However, choosing a parametrization of the Yukawa that is rank-one,
makes interactions as if only one HNL and one lepton flavor interact

Introducingφ0
= h + iφZ

|Ytot|
2 =

∑
α,i |Yαi|

2
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J = 0 results
For J = 0, we have the elastic scatterings

N± `±± ↔ N± `±± ,

N± ν± ↔ N± ν± .

Both processes have the same partial wave

aJ=0 = −|Ytot|2

16π
,

for the unitarity of the S matrix to be maintained, we demand that

|Ytot|2 ≤ 8π .

This replicates a result widely used in different literature (up to a factor of 2)

ΓN

MN
≤ 1

2
=⇒ |Ytot|2 ≤ 4π

Remember that|Re(a)| ≤ 1
2
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J = 1 results

Initial
states

Final states

For J = 1 we can have the set of scatterings{
N− N+, ν− ν+, `

−
− `++, φ

0
0 φ

0∗
0 , φ+

0 φ−
0

}
↔

{
N− N+, ν−ν+, `

−
−`

+
+, φ

0
0 φ

0∗
0 , φ+

0 φ−
0

}
,

we can write all the partial amplitudes in a matrix

aJ=1 =
|Ytot|2

32π

We can get bounds by diagonalizing the matrix. Strongest bound comes from
the largest eigenvalue.

Best bound:

|Ytot|2 ≤ 8π

ϕ
.
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Where is the new line now?
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Results at the Seesaw line
We can do the same analysis at the seesaw line, it is interesting since it gives
us an “upper-bound of the HNL mass”. At the seesaw line:

Y = i
√
2

v VPMNS√mν

√
MN .

previous bounds are not valid, Yukawa matrix is not rank-one.
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2
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Conclusions

• Charged lepton flavour violating processes allow us to probe HNLs with
masses that experiments will never be capable of probing

• These are further enhanced by the non-decoupling behaviour of the
processes, which makes the bounds more sensitive to heavier HNL
masses

• Perturbative unitarity tells us that |Ytot|2 ≤ 8π/ϕ as long as we want
tree-level unitarity to hold
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Diagrams
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Yukawa is rank-one?
Casas-Ibarra parametrization

Y = i
√
2

v VPMNS√mν O
√

MN .

for 2 HNLs, and in the case of normal ordering

O =

 0 0
cosω sinω
− sinω cosω

 ' e−iω

0 0
1 −i
i 1


if Im(ω) � 1.

Other popular parametrization for 3 HNLs:

Y =

Ye i Ye 0
Ye i Yµ 0
Ye i Yτ 0

 ,

is also rank-one.
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Results for general shape of Yukawa
For J = 0 the results hold for any shape of the Yukawa matrix. This is
because the partial wave matrix will have the shape

aJ=0 = − 1

16π


Y∗

e1
Y∗
µ1

...
Y∗
τN

(
Ye1 Yµ1 · · · YτN

)
,

is rank-one. Only non-zero eigenvalue is the trace.

J = 1
2

general results give

aJ= 1
2 = − 1

16π
Y Y† ,

whose eigenvalues in general do not have a nice shape. However, regardless of
the number of additional HNLs, the matrix only has three non-zero
eigenvalues.
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J = 1 general results
For N HNLs, the J = 1 matrix becomes a (N 2 + 20)× (N 2 + 20) matrix

aJ=1 =
1

32π


0 Y Y −

√
2Y −

√
2Y

Y† 0 0 −
√
2 Ỹ 0

Y† 0 0 0 −
√
2 Ỹ

−
√
2Y † −

√
2 Ỹ † 0 0 0

−
√
2Y † 0 −

√
2 Ỹ † 0 0

 ,

with

Y =



|Ye1|2 Ye1 Y∗
µ1 Ye1 Y∗

τ1

∣∣Yµ1

∣∣2 Yµ1 Y∗
e1 Yµ1 Y∗

τ1 |Yτ1|2 Yτ1 Y∗
e1 Yτ1 Y∗

µ1

...
...

...
...

...
...

...
...

...
YeN Y∗

e1 YeN Y∗
µ1 YeN Y∗

τ1 YµN Y∗
µ1 · · · · · · · · · · · · · · ·

Ye1 Y∗
e2 Ye1 Y∗

µ2 Ye1 Y∗
τ2 Yµ1 Y∗

µ2 · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

|YeN |2 YeN Y∗
µN YeN Y∗

τN
∣∣YµN

∣∣2 · · · · · · · · · · · · · · ·
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J = 1 general results
For N HNLs, the J = 1 matrix becomes a (N 2 + 20)× (N 2 + 20) matrix

aJ=1 =
1

32π


0 Y Y −

√
2Y −

√
2Y

Y† 0 0 −
√
2 Ỹ 0

Y† 0 0 0 −
√
2 Ỹ

−
√
2Y † −

√
2 Ỹ † 0 0 0

−
√
2Y † 0 −

√
2 Ỹ † 0 0

 ,

with

Y =
∑
α



|Yα1|2
...

YαN Y∗
α1

Yα1 Y∗
α2

...
|YαN |2


, Ỹ =

∑
i



|Yei|2
Yµi Y∗

ei
Yτ i Y∗

ei
|Yµi|2
Yei Y∗

µi
Yτ i Y∗

µi
|Yτ i|2
Yei Y∗

τ i
Yµi Y∗

τ i


.
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Results beyond s → ∞

For J = 0, we have HNLs in the final and initial state. Conditions on partial
waves change∣∣∣aJ

∣∣∣ ≤ √
s/2
|~pf |

, 0 ≤ Im[aJ ] ≤
√

s/2
|~pf |

,
∣∣∣Re[aJ ]

∣∣∣ ≤ 1

2

√
s/2
|~pf |

.

for J = 1
2

the bounds change because we have a resonance.

J = 1 states have both HNLs in the final and initial state, as well as
resonances. Not clear how to proceed.
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