Long-Lived Sterile Neutrinos and Minimal Left-Right Symmetry

Based on arXiv:2406.15091 Jelle Groot, Jordy de Vries, Herbi Dreiner, Zeren Simon Wang, Julian Günther

Jelle Groot International Workshop on Baryon and Lepton Number Violation (BLV 2024) 10-10-2024

Universiteit van Amsterdam

Motivation: Neutrinos are massive!

The **Standard Model** is not a complete theory!

Neutrino oscillations imply massive neutrinos:

 $P(
u_{\mu}
ightarrow
u_{e}) \propto \sinigg(rac{\Delta m^{2}L}{2E}igg) \qquad \sum_{i=e|\mu, au} m_{
u_{i}} \leq 0.12 ext{ eV}$

Can we use the usual **Higgs mechanism**?

 $-y_e \overline{e_L} \varphi e_R \xrightarrow{\text{EWSB}} -y_e v \overline{e_L} e_R$

 $-y_{\nu}\overline{\nu}_{L}\varphi\nu_{R} \xrightarrow{\text{EWSB}} -y_{\nu}\overline{\nu}_{L}\nu_{R}$

This requires $\,y_
u \sim 10^{-12}$ to ensure $\,m_
u \sim 0.1~{
m eV}$...

Add field ν_R , a **singlet** under the SM gauge group:

Nothing fundamentally wrong; and nothing forbids Majorana mass terms!

2/20KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 10-10-2024

vSMEF1

mLRSM

Plan of attack

Current Work

Future Work

Conclusions

Motivation: How to deal with Majorana terms?

Majorana mass term doesn't break any **fundamental** symmetries:

 $\mathcal{L} \supset -y_{\nu}\overline{\nu_{L}}\varphi\nu_{R} - \nu_{R}^{T}CM_{R}\nu_{R}$

 M_R in principle unrelated to the EWSB scale...

Diagonalize mass matrix:
$$\mathcal{L}_{\nu,\text{mass}} = -\frac{1}{2} \left(\overline{\nu_L} \ \overline{\nu_R}^c \right) \begin{pmatrix} M_L & M_D \\ M_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} + \text{h.c.}$$

Seesaw mechanism instates relations between LH and RH sectors.

 $m_1 \simeq \left| \frac{y_{\nu}^2 v^2}{M_R} \right|, \quad m_2 \simeq M_R \qquad \qquad \nu_1 = \nu_L + \theta \nu_R^c \qquad \qquad |\theta| \simeq \sqrt{\frac{m_1}{m_2}}$

What is the scale of $\,M_R$? $\,
ightarrow\, y_v \simeq 1$ requires $\,M_R \simeq 10^{15}~{
m GeV}$

- Murray Gell-Mann

"Everything not forbidden is compulsory"

Conclusion: Interesting to investigate a wide range of scales!

Our focus: Production of sterile neutrinos in colliders $\rightarrow M_R = \mathcal{O}(\text{GeV})$

KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 4 / 20 10-10-2024

vSMEFT

mLRSN

Plan of attack

Current Work

Future Work

Conclusions

How do we look for these sterile neutrinos?

Long-lived enough to be detectable in **displaced-vertex (DV)** searches

Focus: Production via meson decays (copiously produced at LHC!)

Multiple (proposed) future DV experiments!

AL₃X, ANUBIS, CODEX-b, DUNE, FACET, FASER(2), MATHUSLA, MoEDAL-MAPP1(2), SHiP

vSMEFT

mLRSIV

Plan of attack

Current Work

Future Work

Conclusions

The Standard Model as an Effective Field Theory

If sterile neutrinos exist, they need to arise from somewhere.

Agnostic approach: Attempt to make minimal assumptions regarding BSM

Assume BSM physics lives at a high energy scale $\gg v = 246 \,\,\mathrm{GeV}$

Separation of scales suggests using EFT techniques!

KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 6 / 20 10-10-2024

vSMEFT

mLRSIV

- Plan of attack
- **Current Work**
- **Future Work**
- Conclusions

vSMEFT Framework

 ν_R -extended SM Lagrangian: $\mathcal{L} = \mathcal{L}_{SM} - \left[\frac{1}{2}\bar{\nu}_R^c \bar{M}_R \nu_R + \bar{L}\tilde{H}Y_\nu \nu_R + h.c.\right]$ Focus in our work:

- Dim-6 operators with single sterile neutrino.
- Processes at tree level (generalization is possible)

Customary in previous works:

 Express decay rates of N ↔ SM in terms of vSMEFT Wilson Coefficients.

- **Benchmark Scenarios:** Estimate BSM scale sensitivity of experiments
- Turn on one Wilson coefficient for production, and one for decay.

Potential downsides: Oversimplification

- Unrealistic w.r.t. possible BSM scenarios
- Avoiding stringent limits set by other experiments $(0\nu\beta\beta)$ (!)

Nikhef Universiteit van Amsterdam

KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 7 / 20 10-10-2024

vSMEFT

mLRSM

Plan of attack

Current Work

Future Work

Conclusions

Minimal Left-Right Symmetric Model

Required: SM symmetry group extension.

```
Elegant solution: ~G_{LR} \in SU(2)_L 	imes SU(2)_R 	imes U(1)_{B-L}
```

What do we gain: Right-handed fermion doublets and gauge bosons W_R, Z'

Essential: G_{LR} needs to break down to G_{SM}

Extension of scalar section: Higgs bi-doublet and two scalar triplets

At scale $v_R \gg v$ these scalar field acquire vevs.

Choose a generalized discrete symmetry that establishes the seesaw relations

 $G_{SM} \in SU(2)_L imes U(1)_Y$

Reminder:

vSMEFT

mLRSN

Plan of attack

Current Work

Conclusions

Plan of Attack

What benchmark scenarios should we consider?

Simplest case:

Nik hef Universiteit van Amsterdam

Type-II seesaw scenario; $M_D \rightarrow 0$, no active-sterile mixing.

Important parameters:

$$\begin{split} \boldsymbol{M}_{\boldsymbol{W}_{\boldsymbol{R}}} & \text{and mixing parameter } \boldsymbol{\xi}: \\ \begin{pmatrix} W_{L}^{\pm} \\ W_{R}^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \zeta & -\sin \zeta \\ \sin \zeta & \cos \zeta \end{pmatrix} \begin{pmatrix} W_{1}^{\pm} \\ W_{2}^{\pm} \end{pmatrix} \qquad \zeta = \frac{\xi}{2(\xi^{2}+1)} \left(\frac{M_{W_{L}}}{M_{W_{R}}} \right)^{2}, \text{ with } 0 < \xi < 0.8 \end{split}$$
Only vector gauge bosons \Rightarrow three Wilson coefficients: $\boldsymbol{C}_{\text{VLL}}^{(6)}, \ \boldsymbol{C}_{\text{VLR}}^{(6)}, \ \boldsymbol{C}_{\text{VRR}}^{(6)}$ We can also consider different seesaw scenarios and different discrete symmetries!

vSMEF

mLRSM

Plan of attack

Current Work

Conclusions

Meson decay rates

We can determine B-, D-,K- and π -meson branching ratios into sterile neutrinos.

 $M_{W_R}=7~{
m TeV}$ and in the left (right) panel $~\xi=0~(\xi=0.3)$.

Significant constructive/destructive interference for non-zero mixing!

Nikhef UNIVERSITEIT VAN AMSTERDAM

KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 10 / 20 10-10-2024

vSMEFT

mLRSM

Plan of attack

Current Work

Future Work

Sterile neutrino decay rates

Possible final-state particle contents:

- Quarks: final-state mesons (Pseudo-scalar or Vector)
- SM leptons

Nik hef

fě

UNIVERSITEIT VAN AMSTERDAM KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 11 / 20 10-10-2024

vSMEF

mLRSM

Plan of attack

Current Work

Future Work

Conclusions

Decay Lengths

Important in checking viability of displaced-vertex searches!

Multi-meson corrections:

For $M_4\gtrsim 1~{
m GeV}$, assume quark currents + QCD corrections and no hadronic structure \rightarrow customary in inclusive hadronic tau-lepton decay

12/20

vSMEFT

mLRSM

Plan of attack

Current Work

Future Work

Conclusions

Lifetime determination of Xenon-136

mLRSM can also used to calculate $0\nu\beta\beta$ and other LNV processes.

 KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 13 / 20 10-10-2024

vSMEFT

mLRSM

Plan of attack

Current Work

Nik[hef

flě

Lifetime determination of Xenon-136

mLRSM can also used calculating 0 $\nu\beta\beta$ and other LNV processes.

Stringent limits; $Ov\beta\beta$ signals could be found in next-gen experiments!

UNIVERSITEIT VAN AMSTERDAM KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 10-10-2024

vSMEF

mLRSM

Plan of attack

Current Work

Future Work

Conclusions

Compare sensitivity reaches:

Left (right) panel $\xi = 0 \ (\xi = 0.3)$

Recast lifetime, branching ratio and decay lengths

Future $Ov\beta\beta$ and DV experiments have comparable sensitivity reaches!

vSMEF

mLRSM

Plan of attack

Current Work

Future Work

Conclusions

Decay Lengths: Type-I seesaw

Repeat analysis for type-I seesaw scenarios: $M_D
eq 0$, non-zero active-sterile mixing

For large M_{W_R} , lightest active neutrino mass has large impact.

For small M_{W_B} and $M_4 > M_{\pi}$ right-handed contributions dominate.

vSMEFT

mLRSM

Plan of attack

Current Work

Future Work

Conclusions

Nik]hef 🍨

Lifetime determination of Xenon-136: Type-I seesaw

 $Ov\beta\beta$ signals could be found in next-gen experiments!

 $M_{W_R} = 15 \text{ TeV}$ Normal Hierarchy, Left (right) panel $m_1 = 0.03 \text{ eV} (m_1 = 0.001 \text{ eV})$

UNIVERSITEIT VAN AMSTERDAM KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 17 / 20 10-10-2024

vSMEFT

mLRSM

Plan of attack

Current Work

Future Work

Conclusions

Compare sensitivity reaches:

Recast lifetime, branching ratio and decay lengths

KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 18 / 20 10-10-2024

Left (right) panel $\xi = 0.3 \ (\xi = 0.0)$

vSMEFT

mLRSM

Plan of attack

Current Work

Future Work

Conclusions

What's next?

- Include BBN bounds
- Further investigate multi-meson corrections to the lifetime
- Investigate leptogenesis via oscillations

vSMEF

mLRSM

Plan of attack

Current Work

Future Work

Conclusions

Conclusions

- mLRSM sterile neutrinos could elegantly explain multiple SM puzzles
- DV and $0v\beta\beta$ searches are excellent, complementary probes of right-handed currents
- Exciting future experimental bounds with sensitivities up to $M_{W_R} = \mathcal{O}(25 \text{ TeV})$
- The customary approach for DV searches could be oversimplified if $Ov\beta\beta$ limits are not included

vSMEF1

mLRSIV

Plan of attack

Current Work

Future Work

Conclusions

Thanks for your attention!

KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 21 / 20 10-10-2024

vSMEF

mLRS*N*

Plan of attack

Current Work

Future Work

Conclusions

Backup slides: interference through non-zero mixing

Constructive/destructive interference is based on the Lorentz structure of the processes:

$$\begin{split} \langle h_{\rm PS} | \, \overline{q}_1 \gamma^{\mu} P_{L,R} q_2 \, | B, D \rangle &= + \frac{1}{2} \, \langle h_{\rm PS} | \, \overline{q}_1 \gamma^{\mu} q_2 \, | B, D \rangle \,, \\ \langle h_{\rm V} | \, \overline{q}_1 \gamma^{\mu} P_{L,R} q_2 \, | B, D \rangle &= \mp \frac{1}{2} \, \langle h_{\rm V} | \, \overline{q}_1 \gamma^{\mu} \gamma^5 q_2 \, | B, D \rangle \,, \end{split}$$
Decay rates are proportional to
$$\begin{aligned} |C_{\rm VRR}^{(6)} \mp C_{\rm VLR1}^{(6)}|^2 \end{split}$$

vSMEF

mLRSIV

Plan of attack

Current Work

Future Work

Conclusions

Backup slides: active-sterile neutrino-mass relation

Irrespective of choice of generalized P or C symmetry, the type-II seesaw scenario gives the relation

 $\widehat{M_N} = \frac{v_R}{v_L} \widehat{m}_\nu.$

This leads to

NH: $M_{4,5} = \frac{m_{1,2}}{m_3} M_6$, IH: $M_{4,5} = \frac{m_{3,1}}{m_2} M_6$,

vSMEFT

MLRSM

Plan of attack

Current Work

Future Work

Conclusions

 $\mathcal{L}_{\nu,\text{mass}} = -\frac{1}{2} \left(\overline{\nu_L} \ \overline{\nu_R}^c \right) \begin{pmatrix} M_L & M_D \\ M_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} + \text{h.c.}$ **Backup slides:** vev structure of G_LR

 $G_{\rm LR} \equiv SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L},$

 $\Delta_{L,R} \equiv \begin{pmatrix} \delta_{L,R}^+ / \sqrt{2} & \delta_{L,R}^{++} \\ \delta_{L,R}^0 & -\delta_{L,R}^+ / \sqrt{2} \end{pmatrix} \qquad \Delta_L \in (\mathbf{3}, \mathbf{1}, 2) \text{ and } \Delta_R \in (\mathbf{1}, \mathbf{3}, 2)$ $\Phi \equiv \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \qquad \Phi \in (\mathbf{2}, \mathbf{2}^*, 0)$

$$\begin{split} \langle \Phi \rangle &= \begin{pmatrix} \kappa/\sqrt{2} & 0\\ 0 & \kappa' e^{i\alpha}/\sqrt{2} \end{pmatrix}, \quad \langle \Delta_L \rangle = \begin{pmatrix} 0 & 0\\ v_L e^{i\theta_L}/\sqrt{2} & 0 \end{pmatrix}, \quad \langle \Delta_R \rangle = \begin{pmatrix} 0 & 0\\ v_R/\sqrt{2} & 0 \end{pmatrix}, \\ \sqrt{\kappa^2 + \kappa'^2} &= v \qquad v_R \gg v \gg v_L \end{split}$$

Nikhef 🔮 Universiteit van Amsterdam

KIT: International Workshop on Baryon and Lepton Number Violation (BLV 2024) 24 / 20 10-10-2024