Searches for Hidden Sectors and Lepton Number/Flavour Violation in Kaon Decays

> **R. Fantechi** INFN – Sezione di Pisa and CERN on behalf of the NA62 Collaboration

> > BLV 2024 October 8<sup>th</sup>-11<sup>th</sup>, 2024

# Kaon decays at CERN



# The NA62 beam



## The NA62 detector



# NA62 runs



Run2: 2021-2025, ongoing

- Upgrades wrt Run1:
- Added 4th station to GTK beam tracker
- Additional vetoes around beam pipe(both upstream/downstream the FV)
- New veto hodoscope upstream of decay volume (ANTIO)
- New H2-filled Kaon identification detector (CEDAR-H) to reduce material budget [since 2023]
- DAQ stability improved



#### Total of 10<sup>13</sup> useful kaon decays Average intensity 2\*10<sup>12</sup> protons/pulse



# Searches for LFV/LNV in Kaon decays Data from Run1

Lepton Flavour Violation: forbidden in SM, predicted by many BSM scenarios

Example: LFV mediated by a leptoquark u $\overline{s}$   $Y_{LQ}$  $l_1^+$   $l_2^-$ 

Lepton Number Violation: forbidden in SM, predicted by many BSM scenarios

Example: LNV mediated by a Majorana neutrino



# Search for $K^+ \rightarrow \pi^- e^+ e^+$ and $K^+ \rightarrow \pi^- \mu^+ \mu^+$



 $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$  and  $K^+ \rightarrow \mu^- \nu e^+ e^+$ 



#### Search for $K^+ \rightarrow \pi \mu e$ decays





Expected background: 0.92±0.34 evt Candidates observed: 2 BR(K<sup>+</sup> $\rightarrow \pi^{+}\mu^{-}e^{+})<6.6\times10^{-11}$  at 90% CL BR( $\pi^{0}\rightarrow\mu^{-}e^{+})<3.2\times10^{-10}$  at 90% CL

### Search for $K^+ \rightarrow \pi^0 \pi \mu e$ decays



# Current status of LFV/LNV decays



# Searches for hidden sectors in Kaon decays

### NA62 operation modes for hidden sectors

- Use of specific downscaled trigger masks during  $\pi vv$  runs
- Dedicated runs with the beam in dump mode
  - Target removed, collimator closed, 50% more primary beam intensity



#### $K^+ \rightarrow \pi^+ X_{invisible}$ : a $K^+ \rightarrow \pi^+ \nu \nu$ spin-off

Peak search in the range  $0 \le m_X \le 110$ MeV/c and  $154 \le m_X \le 260$  MeV/c

Acceptance scan over  $m_x$  and  $\tau_x$ 

Main background from  $K^+ \rightarrow \pi^+ \nu \nu$ 



#### JHEP 06 (2021) 093

long-lived X or  $X \rightarrow$  invisible

0.3

0.25

0.2

0.15

Observed UL Expected UL

+ 10

 $\pm 2\sigma$ 

J

# $K^+ \rightarrow \pi^+ \pi^0_{\text{invisible}}$ : a $K^+ \rightarrow \pi^+ \nu \nu$ spin-off

Basic event selection used for  $K^+ \rightarrow \pi^+ \nu \nu$ , but applied to the  $K^+ \rightarrow \pi^+ \pi^0$  region

Main background from  $K^+ \rightarrow \pi^+ \pi^0 (\pi^0 \rightarrow \gamma \gamma)$ Estimated using MC with single  $\gamma$  efficiency by tag-and-probe method

Validates  $\pi^0$  rejection estimate for  $K^+ \rightarrow \pi^+\nu\nu$  analysis Expected  $\pi^0 \rightarrow \gamma\gamma$  events:  $10^{+22}_{-8}$ , observed 12





 $K^+ \rightarrow \pi^+ X(X \rightarrow \gamma \gamma)$ : a  $K^+ \rightarrow \pi^+ \gamma \gamma$  spin-off

Peak search in the signal region  $207 \le m_X \le 350 \text{ MeV/c}^2$ 

Main background from  $K^+ \rightarrow \pi^+ \gamma \gamma$ 





### $K^+ \rightarrow \pi^+ X$ searches: interpretation

The limits on the branching ratios of the three above decays translate to the parameter space for hidden-sector portals



# HNL production

Main  $K\pi\nu\nu$  trigger line used  $N_{K} = 3.5 \times 10^{12}$  decays

Single-track selection, with **e**+ PID Peak search in  $m_{miss}^2 = (P_K - P_e)^2$  distribution corresponding to  $m_N$  range 144-462 MeV/c<sup>2</sup> Main background:  $K^+ \rightarrow \mu^+ \nu \ (\mu^+ \rightarrow e^+ \nu \nu)$  Heavily-downscaled (x400) minimum-bias trigger line used  $N_{K} = 4.3 \times 10^{9}$  decays

Single-track selection, with  $\mu$ + PID Peak search in in  $m_{miss}^2 = (P_K - P_\mu)^2$  distribution corresponding to  $m_N$  range 200-384 MeV/c<sup>2</sup> Main background: K<sup>+</sup> $\rightarrow \mu^+ \nu \gamma$ 



R. Fantechi - BLV 2024 - October 8th 2024

# HNL production: results

BC6,7:  $|U_{l_4}|^2$  limits vs m<sub>HNL</sub> from production & decay searches



- For  $|U_{e4}|^2$ , complementary to search for  $\pi + \rightarrow e + N$  at PIENU.
- For  $|U_{\mu4}|^2$ , complementary to search for  $K \rightarrow \mu + N$  at BNL-E949.
- In both cases, complementary to HNL decay searches at T2K.
- Future pion experiments might reach the seesaw bound.

UL on BR(K<sup>+</sup> $\rightarrow$ µ<sup>+</sup>vvv) < 1.0×10<sup>-6</sup> (90%CL) + similar ULs on BR(K+ $\rightarrow$ µ<sup>+</sup>vX<sub>inv</sub>) vs m(X<sub>inv</sub>)

#### Pair production of BSM particles

```
NA62 Run 1, multi-electron trigger, five-track selection, N<sub>K</sub>=8.6×10<sup>11</sup>.
3 interpretations: PLE
```

PLB846 (2023) 138193

- Production and prompt decays of axion pairs, K<sup>+</sup>→π<sup>+</sup>aa, a→e<sup>+</sup>e<sup>-</sup>: exclusion of the QCD axion explanation for the "17 MeV anomaly". Expect BR(K<sup>+</sup>→π<sup>+</sup>aa)>2×10<sup>-8</sup> for m<sub>a</sub>=17 MeV. [Alves, PRD103 (2021) 055018; Hostert and Pospelov, PRD105 (2022) 015017]
- Prompt dark cascade involving a dark scalar (S) and dark photons (A'):  $K^+ \rightarrow \pi^+ S$ ,  $S \rightarrow A'A'$ ,  $A' \rightarrow e^+e^-$
- The SM decay:  $BR_{SM}(K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-) = (7.2 \pm 0.7) \times 10^{-11}$  [Husek, PRD106 (2022)]



### Beam dump: $A' \rightarrow \ell^+\ell^-$

Require  $\ell+\ell$ - vertex in FV and pointing back to beam interaction point in TAX (CDA vs z)

#### Background types

Prompt: Interactions of single halo µ with material upstream of/inside FV Combinatorial: Accidental coincidence of single halo µ Upstream: Upstream hadrons refocused in the beam-pipe by the GTK achromat Neutrino induced: Estimated using MC and negligible for all channels

#### **Background estimation**

Backwards MC (PUMAS) used to infer kinematics of halo  $\mu$ Pair-mixing and forward simulation for background estimate at  $O(10^{17})$  POT level Upstream background estimated by using kaons selected in beam dump data which are used as a gun for the MC simulation



#### PRL 133 (2024) 111802



### Beam dump: Hadronic final states



## Prospects

- The available results are currently based only on Run1 (2016-2018)
- In the Run2, we expect  $N_{K} \sim 4x$ 
  - Higher intensity
  - Better run conditions
- LNV/LFV decays
  - All presented decays are not background-limited
  - Expected sensitivity  $4x (~1/N_K)$
- Light particle searches
  - not background limited, sensitivity  $\sim 1/N_{K}$
  - background limited, sensitivity ~1/  $\sqrt{N_K}$
- Dump-mode
  - Expected ~10<sup>18</sup> POT before the end of NA62 (10x increase)
  - 10x better sensitivity for the background free searches

# Conclusion

- Besides the main goal of NA62, many searches for new physics have been performed
  - LFV/LNV decay searches with stringent constraints on the BR (~ $O(10^{-9}-10^{-10})$
  - Dark sector searches
    - With specific trigger lines and with beam-dump special runs
    - Model-independent limits on the production of dark light particles
    - In beam-dump mode: new results on  $A' \rightarrow \ell + \ell and X \rightarrow hadrons$
- · Prospects
  - Improvements in Run2 on many of the presented analyses
  - 10 times more statistics in beam-dump mode
    - $10^{18}$  POT expected by the end of NA62







### Thank you!

... and of the current analysis work...









### **Results in context**

BNL E787/E949 experiment [Phys.Rev.D 79 (2009) 092004]

$$\mathscr{B}_{\pi\nu\bar{\nu}}^{16-18} = (10.6^{+4.1}_{-3.5}) \times 10^{-11}$$

[JHEP 06 (2021) 093]

 $\mathscr{B}_{\pi\nu\bar{\nu}}^{21-22} = (16.0^{+5.0}_{-4.5}) \times 10^{-11}$ 

$$\mathscr{B}_{\pi\nu\bar{\nu}}^{16-22} = (13.0^{+3.3}_{-2.9}) \times 10^{-11}$$

- NA62 results are consistent
- Central value moved up (now 1.5–1.7 $\sigma$  above SM)
- Fractional uncertainty decreased: 40% to 25%
- Bkg-only hypothesis rejected with significance Z>5





51

