Quasi-Dirac HNLs in the Left-Right Symmetric Model

BLV 2024

Oleksii Mikulenko

Leiden University, the Netherlands

Quasi-Dirac HNLs in the LRSM

Beyond the Standard Model

Standard Model of Elementary Particles

Still missing:

Dark matter

Baryon asymmetry

Neutrino masses

Heavy Neutral Leptons (HNL)

 Minimal solution – right-handed neutrinos with Majorana mass:

$$\mathcal{L}_N \supset -F_{\alpha I} \bar{L}_{\alpha} \tilde{H} N_I + \frac{M_I}{2} \bar{N}_I^c N_I + \text{h.c.},$$

• Mixing angles after spontaneous symmetry breaking

$$heta_{lpha I} = rac{F_{lpha I} v}{\sqrt{2} M_I}, \qquad U_{lpha I} = | heta_{lpha I}| \ll 1$$

- T

-

・ロン ・日 ・ ・ ヨン・

∃ ► Ξ|= <00</p>

• Two HNLs N_2 , N_3 to produce two active neutrino masses via the seesaw mechanism. The mixing angles are at least

$$U^2 \gtrsim U_{
m seesaw}^2 \sim rac{m_
u}{m_N}$$

. • 1	2011	T	50

 EL OQO

• Two HNLs N_2 , N_3 to produce two active neutrino masses via the seesaw mechanism. The mixing angles are at least

$$U^2 \gtrsim U_{
m seesaw}^2 \sim rac{m_
u}{m_N}$$

• The same two HNLs generate baryon asymmetry via leptogenesis. Bonus: HNLs can be as light as GeV if mass degenerate

= - 000

• Two HNLs N_2 , N_3 to produce two active neutrino masses via the seesaw mechanism. The mixing angles are at least

$$U^2 \gtrsim U_{
m seesaw}^2 \sim rac{m_
u}{m_N}$$

- The same two HNLs generate baryon asymmetry via leptogenesis. Bonus: HNLs can be as light as GeV if mass degenerate
- One HNL N_1 keV dark matter. Negligible contribution to neutrino masses from stability considerations

Experimental constraints

[2204.08039]

Quasi-Dirac HNLs in the LRSM

BLV 2024

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Experimental constraints

Future experiments have the potential to observe millions of events

 precision physics

(日) (문) (문) (문) (문)

Experimental constraints

Future experiments have the potential to observe millions of events

 \implies precision physics

• (If we can have $U^2 \gg U_{\text{seesaw}}^2$)

Quasi-Dirac limit

- Approximate lepton symmetry: cancellation of seesaw contributions
- The mixing angles for two degenerate HNLs converge to the same value

$$\Delta m_N \ll m_N, \qquad U_{\alpha 2}^2 = U_{\alpha 3}^2 \left[1 + O\left(\frac{U_{\text{seesaw}}^2}{U^2}, \frac{\Delta m_N}{m_N}\right) \right] \equiv U_{\alpha}^2$$

If a signal has been observed, what can we tell about the underlying physics of what has been found?

 ELE NOR

If a signal has been observed, what can we tell about the underlying physics of what has been found?

Have we solved any problem, or just added more?

The SHiP experiment

Requirement	Value
Track momentum	> 1.0 GeV/c
Track pair distance of closest approach	< 1 cm
Track pair vertex position in decay volume	> 5 cm from inner wall
Impact parameter w.r.t. target (fully reconstructed)	< 10 cm
Impact parameter w.r.t. target (partially reconstructed)	< 250 cm

Background source	Expected events
Neutrino DIS	< 0.1 (fully) / < 0.3 (partially)
Muon DIS (factorisation)	$< 6 \times 10^{-4}$
Muon combinatorial	$1.2 imes 10^{-2}$

[2112.01487]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	Physics model	Final state
	HNL, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ \ell^{\pm}K^{\mp}, \ \ell^{\pm}\rho^{\mp}(\rho^{\mp} \rightarrow \pi^{\mp}\pi^{0})$
	DP, DS, ALP (fermion coupling), SUSY sgoldstino	l+l-
DS	DP, DS, ALP (gluon coupling), SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
	HNL, SUSY neutralino, axino	$\ell^+\ell^-\nu$
	ALP (photon coupling), SUSY sgoldstino	77
	SUSY sgoldstino	$\pi^{0}\pi^{0}$
	LDM	Electron, proton, hadronic shower
D	$v_{\tau}, \overline{v}_{\tau}$ measurements	T [±]
	Neutrino-induced charm production (v_e, v_{μ}, v_{τ})	$D_{\delta}^{\pm}, D^{\pm}, D^{0}, \overline{D^{0}}, \Lambda_{c}^{+}, \overline{\Lambda_{c}}^{-}$

$m_N = 1.5 \, { m GeV}$

	decay mode	mixing	$\Gamma_{\alpha} \times 10^{13}, \text{GeV}$
0)	$N \rightarrow 3\nu$	$U_{e,\mu,\tau}^2$	1.7
1)	$N \rightarrow \nu ee$	$(U_e^2, U_{\mu,\tau}^2)$	(1.0, 0.2)
2)	$N \rightarrow \nu e \mu$	$U_{e,\mu}^{2}$	1.7
3)	$N \rightarrow \nu \mu \mu$	$(U^2_{\mu}, U^2_{e,\tau})$	(1.0, 0.2)
4)	$N \to \nu h^0 (\text{NC})$	$U_{e,\mu,\tau}^2$	2.5
5)	$N \to eh^+ (CC)$	U_e^2	5.0
6)	$N \to \mu h^+$ (CC)	U_{μ}^2	5.0

 $Br_i \sim x_e \Gamma_e + x_\mu \Gamma_\mu + x_\tau \Gamma_\tau$

< ロ > < 同 > < 回 > < 回

三日 のへの

Probe two-HNL seesaw

BLV 2024

A¶ ▶

10/29

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- T

Measuring PMNS Majorana phase

\sim			
		m	20
0.0	-Noll		

A →

13/29

With such a tool, what can we say about **nonminimal interactions** of HNLs?

With such a tool, what can we say about **nonminimal interactions** of HNLs?

For example:

- Dipole portal
- Axion-HNL coupling

• ...?

[1803.03262]

고 노

[1911.12394] [2212.11290]

Add right-handed interactions: Left-Right Symmetric Model

$$\begin{split} \mathcal{S}\mathcal{U}_{\mathcal{C}}(3) imes \mathcal{S}\mathcal{U}_{\mathcal{L}}(2) imes \mathcal{S}\mathcal{U}_{\mathcal{R}}(2) imes \mathcal{U}_{\mathcal{B}-\mathcal{L}}(1) &
ightarrow & \mathcal{S}\mathcal{U}_{\mathcal{C}}(3) imes \mathcal{S}\mathcal{U}_{\mathcal{L}}(2) imes \mathcal{U}_{\mathcal{Y}}(1) \ &
ightarrow \mathcal{S}\mathcal{S}\mathcal{U}_{\mathcal{C}}(3) imes \mathcal{U}_{\mathsf{EM}}(1) \end{split}$$

• Effective (below EW) left

$$\begin{split} \mathcal{L} \supset \quad \theta_{\alpha I}^{L} \frac{\mathcal{G}_{F}}{\sqrt{2}} \bar{l}_{\alpha} \mathcal{N}_{I}^{c} \times [\bar{\nu}_{\beta} l_{\beta} + V_{ij}^{\mathsf{CKM}} \bar{u}_{i,L} d_{j,L}] \\ \qquad \qquad + \theta_{\alpha I}^{L} \frac{\mathcal{G}_{F}}{\sqrt{2}} \bar{\nu}_{\alpha} \mathcal{N}_{I}^{c} J_{Z} \end{split}$$

Quasi-Dirac HNLs in the LRSM

Add right-handed interactions: Left-Right Symmetric Model

$$\begin{split} SU_{C}(3) imes SU_{L}(2) imes SU_{R}(2) imes U_{B-L}(1) &
ightarrow \ &
ightarrow SU_{C}(3) imes SU_{L}(2) imes U_{Y}(1) \ &
ightarrow SU_{C}(3) imes U_{EM}(1) \end{split}$$

• Effective (below EW) left

$$\begin{split} \mathcal{L} \supset \quad \theta^{L}_{\alpha I} \frac{G_{F}}{\sqrt{2}} \bar{l}_{\alpha} N^{c}_{I} \times [\bar{\nu}_{\beta} l_{\beta} + V^{\mathsf{CKM}}_{ij} \bar{u}_{i,L} d_{j,L}] \\ \quad + \theta^{L}_{\alpha I} \frac{G_{F}}{\sqrt{2}} \bar{\nu}_{\alpha} N^{c}_{I} J_{Z} \end{split}$$

• ... and right-handed interactions

$$+\theta_{\alpha I}^{R}\frac{G_{F}}{\sqrt{2}}\bar{l}_{\alpha}N_{I}\times\left[\tilde{V}_{J\beta}^{R}\bar{N}_{J}l_{\beta}+V_{ij}^{R,\mathsf{CKM}}u_{i,R}d_{i,R}\right]$$

Two sets of couplings $|\theta| \ll 1$

(LH):
$$\theta_{\alpha I}^L$$
, (RH): $\theta_{\alpha I}^R \sim \frac{m_W^2}{m_{W_R}^2}$

				-
-	1.1.1.1		 ын	

Quasi-Dirac HNLs in the LRSM

BLV 2024

・ロト ・回ト ・ヨト・

16 / 29

∃ ► Ξ|= <00</p>

Two sets of couplings $|\theta| \ll 1$

(LH):
$$\theta_{\alpha I}^L$$
, (RH): $\theta_{\alpha I}^R \sim \frac{m_W^2}{m_{W_R}^2}$

to be constrained by the seesaw relation:

$$m_{\nu} = - \underbrace{\theta^L M \theta^L}_{\text{type-I seesaw}} + \underbrace{\frac{v_L}{v_R} M}_{\text{type-II seesaw}}$$

- complicated 3×3 matrix equation.

has closed analytic solution for θ_L , if θ_R , m_N fixed [2403.07756]

0					
0	ек	SIL	ĸu	en	ко

ELE DOG

$$\begin{split} \mathcal{L} \supset \bar{L}_{\alpha}([Y_{e}]_{\alpha\beta}\Phi - [Y_{\nu}]_{\alpha\beta}\sigma_{2}\Phi^{*}\sigma_{2})R_{\beta} + \\ &+ \bar{L}_{\alpha}^{c}[Y_{1}]_{\alpha\beta}i\sigma_{2}\Delta_{L}L_{\beta} + \bar{R}_{\alpha}^{c}[Y_{2}]_{\alpha\beta}i\sigma_{2}\Delta_{R}R_{\beta} + \text{h.c.} \\ \Phi \rightarrow v \operatorname{diag}(\cos b, -\sin b \, e^{-ia}) \qquad \Delta_{L,R} \rightarrow \begin{pmatrix} 0 & 0 \\ v_{L,R} & 0 \end{pmatrix} \end{split}$$

Generalized parity: $Y_e^\dagger = Y_e, \quad Y_\nu^\dagger = Y_\nu, \quad Y_1 = Y_2$

After spontaneous symmetry breaking and diagonalization of I, N masses:

$$U_{\text{PMNS}}^{\text{diag}} M_{\nu}^{\text{diag}} U_{\text{PMNS}}^{\dagger} = -(vV_RY - m_l^{\text{diag}}be^{ia}V_R)[m_N^{\text{diag}}]^{-1}(vY^TV_R^T - V_R^Tm_l^{\text{diag}}be^{ia}) + \frac{v_L}{v_R}V_R^*m_N^{\text{diag}}V_R^{\dagger}$$
with $Y = V_P^{\dagger}Y_{\nu}V_R$, $Y^{\dagger} = Y$, $V_P^{\dagger} = V_R$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの()

$$U_{\rm PMNS}^{*} m_{\nu}^{\rm diag} U_{\rm PMNS}^{\dagger} = -(vV_RY - m_l^{\rm diag}be^{ia}V_R)[m_N^{\rm diag}]^{-1}(vY^TV_R^T - V_R^Tm_l^{\rm diag}be^{ia}) + \frac{v_L}{v_R}V_R^*m_N^{\rm diag}V_R^{\dagger}$$

$$\theta_{\alpha I}^{R} = \frac{m_{W_{L}}^{2}}{m_{W_{R}}^{2}} [V_{R}]_{\alpha I}, \qquad \theta_{\alpha I}^{L} = \frac{i}{m_{N_{I}}} \left[v V_{R} Y - b e^{ia} m_{I}^{\text{diag}} V_{R} \right]_{\alpha I}$$

Oleksii Mikulenko

Quasi-Dirac HNLs in the LRSM

シック 正正 《田》《田》《田》 《日》 BLV 2024

$$U_{\rm PMNS}^{*} m_{\nu}^{\rm diag} U_{\rm PMNS}^{\dagger} = -(vV_RY - m_l^{\rm diag}be^{ia}V_R)[m_N^{\rm diag}]^{-1}(vY^TV_R^T - V_R^Tm_l^{\rm diag}be^{ia}) + \frac{v_L}{v_R}V_R^*m_N^{\rm diag}V_R^{\dagger}$$

$$\theta_{\alpha I}^{R} = \frac{m_{W_{L}}^{2}}{m_{W_{R}}^{2}} [V_{R}]_{\alpha I}, \qquad \theta_{\alpha I}^{L} = \frac{i}{m_{N_{I}}} \left[v V_{R} Y - b e^{ia} m_{I}^{\text{diag}} V_{R} \right]_{\alpha I}$$

• Assume 2 quasi-Dirac pair N₂, N₃ ($|\theta_{L,2/3}|^2 \gg U_{\text{seesaw}}^2$) and a decoupled DM candidate ($|\theta_{L,1}|^2 \ll U_{\text{seesaw}}^2$)

$$m_N^{\text{diag}} = m_N \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad Y = y \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -i \\ 0 & i & 1 \end{pmatrix}, \quad y \gg 1$$

• and perturb this exact lepton symmetry

Oleksii Mikulenko

Quasi-Dirac HNLs in the LRSM

BLV 2024

・ロト ・四ト ・ヨト ・ヨヨ

Type-I only: analytic solution

Neutrino masses: 0,
$$m_2$$
, m_3
 $V^R = iU^*_{PMNS}O$

$$V_{\alpha 2}^{L} = -iV_{\alpha 3}^{L} = \frac{e^{i\beta}}{\sqrt{m_{2} + m_{3}}} \tilde{U}_{\mathsf{PMNS}}^{*} P \times \begin{pmatrix} 0\\ \mp e^{-i\eta}\sqrt{m_{2}}\\ \sqrt{m_{3}} \end{pmatrix}, \quad \frac{|\theta_{\alpha}^{L}|^{2}}{\sum_{\alpha} |\theta_{\alpha}^{L}|^{2}} = |V_{\alpha}^{L}|^{2}$$

with

$$O = \frac{1}{\sqrt{2(m_2 + m_3)}} \times \\ \times \begin{pmatrix} \sqrt{2(m_2 + m_3)} & 0 & 0 \\ 0 & -i(\sqrt{m_3}e^{-i\beta} \pm \sqrt{m_2}e^{i\beta}) & \sqrt{m_3}e^{-i\beta} \mp \sqrt{m_2}e^{i\beta} \\ 0 & -(\sqrt{m_3}e^{i\beta} \mp \sqrt{m_2}e^{-i\beta}) & i(\sqrt{m_3}e^{i\beta} \pm \sqrt{m_2}e^{-i\beta}) \end{pmatrix}$$

- two free parameters: Majorana phase η and angle β

- V^L_{lpha} remain **the same** as in the minimal case only depend on η
- $V^R_{\alpha 2}$, $V^R_{\alpha 3}$ depend on both η , β
- $|V_{\alpha 1}^R|^2$, $|V_{\alpha 1}^R|^2 + |V_{\alpha 1}^L|^2$ are fixed
- HNL mass splitting $|m_{N_2} m_{N_3}|$ is arbitrary

Corrections

Type-II corrections $\kappa = \frac{v_L m_N}{v_R (m_2 + m_3)}$

Quasi-Dirac HNLs in the LRSM

BLV 2024

Interesting signatures?

▲ @ ▶ < ≥ ▶</p>

∃ ► Ξ|= <00</p>

• Decoherent pair:

number of ev. $(X \to I_{\alpha}N \to I_{\alpha}I_{\beta}) \propto |V_{\alpha 2}|^2 |V_{\beta 3}|^2 + |V_{\alpha 3}|^2 |V_{\beta 2}|^2$

• Coherent pair:

number of ev.
$$(X \to I_{\alpha}N \to I_{\alpha}I_{\beta}^{\pm}) \propto |V_{\alpha 2}V_{\beta 3}^{(*)} + V_{\alpha 3}V_{\beta 2}^{(*)}|^2$$

Summing up over one lepton flavor (α) — everything reduces to $\propto |V_{\beta 2}|^2 + |V_{\beta 3}|^2$

0	leksii	Mikı	ılen	ko	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの()

Probing decoherence at SHiP

• The initial lepton is lost in the target — no information?

-						
0	п	ksii	- Mit	ĸп	len	ko

Probing decoherence at SHiP

- The initial lepton is lost in the target no information?
- Not if kinematic constraints help us
- For example, $D \rightarrow I_{\alpha} N \rightarrow I_{\alpha} I_{\beta}$ cannot have τ -leptons for a GeV HNL

イロト (周) (ヨト (ヨト) 三日 ののの

Probing decoherence at SHiP

- The initial lepton is lost in the target no information?
- Not if kinematic constraints help us
- For example, $D \to l_{\alpha} N \to l_{\alpha} l_{\beta}$ cannot have τ -leptons for a GeV HNL

Probing decoherence with Keung-Senjanović process

- Full reconstruction of event matrix $X \to I_{\alpha}^{-} N \to I_{\alpha}^{-} I_{\beta}^{\pm}$
- In the coherent case, LNV can dominate LNC decays

< 🗇 🕨

-

DM at SHiP

No $N_{2,3} \rightarrow N_1$ decay in the minimal LH case

DM at SHiP

• Benchmark model:

$$\begin{split} |V_e^L|^2 &: |V_{\mu}^L|^2 : |V_{\tau}^L|^2 = 0.11 : 0.22 : 0.67 \\ |V_{e2}^R|^2 &: |V_{\mu2}^R|^2 : |V_{\tau2}^R|^2 = 0.16 : 0.46 : 0.38 \\ |V_{e3}^R|^2 &: |V_{\mu3}^R|^2 : |V_{\tau3}^R|^2 = 0.16 : 0.46 : 0.38 \\ |V_{e1}^R|^2 &: |V_{\mu3}^R|^2 : |V_{\tau3}^R|^2 = 0.49 : 0.22 : 0.30 \end{split}$$

Fraction of RH interactions:

$$\mathcal{R}\equiv rac{U_R^2}{U_L^2+U_R^2}$$

For a given R < 1, we want to distinguish
no light N₁ versus LH-only HNL with arbitrary V^L
with light N₁ versus LH-only HNL with arbitrary V^L,
with light N₁ versus HNL with both LH, RH-interactions, arbitrary couplings V^L, V^R, R, but no N₁.

▲ @ ▶ < ≥ ▶</p>

포네크

- Precision physics at Intensity Frontier is possible
- We need to know what results to expect and how to interpret them

Oleksii Mikulenko

Quasi-Dirac HNLs in the LRSM

BLV 2024

글 🖌 글 글

Back-up

Quasi-Dirac HNLs in the LRSM

(本間) (本語) (本語)

▶ Ξ = ୬ ۹ ୧

FCC-ee

BLV 2024

< 17 ►

2/2

三日 のへの