Some novel searches for neutrino dipole moments

Michele Frigerio

Laboratoire Charles Coulomb, CNRS & Université de Montpellier

** Muon collider probes of Majorana neutrino dipole moments and masses* with **Natascia Vignaroli ,** arXiv:2409.02721

** Testing the dipole moment of GeV-scale sterile neutrinos* with **Enrico Bertuzzo**, arXiv:241x.xxxxx

Baryon & Lepton Number Violation 2024 KIT Karlsruhe - 8 / 11 October

Searching for new physics ...

THE ROAD Corman McCarthy, 2006 Joe Penhall, 2009

Neutrinos: masses vs dipoles

Two Weyl spinors : $\nu = \begin{pmatrix} \nu e \\ \end{pmatrix}$ Flavour symmetry

 $\mathcal{L} \supset \nu_{\alpha}^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} \delta_{\alpha \beta} \nu_{\beta}$

Kinetic operator: marginal (dim = 4), Δ L = 0, preserves SU(2)_F

Neutrinos: masses vs dipoles

Two Weyl spinors : $\nu = \begin{pmatrix} \nu e \\ \end{pmatrix}$ Flavour symmetry

 $\mathcal{L} \supset \nu_{\alpha}^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} \delta_{\alpha \beta} \nu_{\beta}$

Kinetic operator: marginal (dim = 4), $\Delta L = 0$, preserves SU(2)_F

$$
\mathcal{L} \supset \frac{1}{2} \nu_{\alpha} m_{\alpha\beta} \nu_{\beta} + h.c.
$$
\n
$$
m_{\alpha\beta} = m_{\beta\alpha}
$$
\n
$$
m \equiv m_A (\epsilon \sigma_A)
$$
\nMass operator: relevant (dim = 3), $\Delta L = 2$, breaks SU(2)_F

\n
$$
m_A \text{ real preserves } U(1)_F : \text{ one Dirac fermion}
$$
\n
$$
m_A \text{ complex breaks } U(1)_F : \text{two Majorana fermions}
$$
\n
$$
m_A \sim 3_F
$$

Neutrinos: masses vs dipoles

Two Weyl spinors : $\nu = \begin{pmatrix} \nu e \\ \end{pmatrix}$ Flavour symmetry

 $\mathcal{L} \supset \nu_{\alpha}^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} \delta_{\alpha \beta} \nu_{\beta}$

Kinetic operator: marginal (dim = 4), Δ L = 0, preserves SU(2)_F

$$
\mathcal{L} \supset \frac{1}{2} \nu_{\alpha} m_{\alpha\beta} \nu_{\beta} + h.c.
$$
\n
$$
m_{\alpha\beta} = m_{\beta\alpha}
$$
\n
$$
m \equiv m_A (\epsilon \sigma_A)
$$
\nMass operator: relevant (dim = 3), $\Delta L = 2$, breaks SU(2)_F

\n
$$
m_A \text{ real preserves } U(1) \in \mathcal{L} \text{ one Dirac fermion}
$$
\n
$$
m_A \text{ complex breaks } U(1) \in \mathcal{L} \text{ two Majorana fermions}
$$

$$
\mathcal{L} \supset \frac{1}{2} \nu_\alpha \, \sigma^{\mu\nu} \, \lambda_{\alpha\beta} \, \nu_\beta \, F_{\mu\nu} + h.c. \qquad \lambda_{\alpha\beta} = -\lambda_{\beta\alpha}
$$

Dipole operator: irrelevant (dim = 5), $\Delta L = 2$, preserves SU(2)_F

 \Rightarrow small mass and large dipole is technically natural !

 $\lambda \sim 1_F$

ν dipole from SM EFT operators

Δ L = 2 operators in the SM effective field theory :

 $m_{\alpha\beta}=C_{\alpha\beta}^5v^2$ dimension-5 $\mathcal{L}_5 = C^5 \mathcal{O}_5$ $(\mathcal{O}_5)_{\alpha\beta} = (\overline{\ell_{L\alpha}^c} \epsilon H)(H^T \epsilon l_{L\beta})$ $\frac{\nu_{\alpha}}{\gamma}$ $\frac{\nu_{\beta}}{\gamma}$

ν dipole from SM EFT operators

 $\Delta L = 2$ operators in the SM effective field theory :

ν dipole from SM EFT operators

 $\Delta L = 2$ operators in the SM effective field theory :

Some current bounds on ν dipole

* Solar neutrino elastic scattering on nuclei (photon exchange)

$$
\lambda_{\nu} \simeq \left(\sum_{k} |U_{ek}|^2 \sum_{j} |\lambda_{jk}|^2\right)^{1/2} < 0.6 \cdot 10^{-11} \mu_B \ (90\% \, C.L.)
$$

Giunti Studenikin 1403.6344 XENON 2207.11330, LZ 2207.03764

* Stellar energy loss (red giant branch of globular clusters)

 $\lambda_{\nu} \leq 0.1 \cdot 10^{-11} \mu_B (95\% C.L.)$

Capozzi Raffelt 2007.03694

 $\mu_B \equiv \frac{e}{2m_e}$

- indirect (neutrinos not observed)

- effective combination of flavours
- insensitive to lepton number
- large systematic uncertainties ?

Some current bounds on ν dipole

* Solar neutrino elastic scattering on nuclei (photon exchange)

$$
\lambda_{\nu} \simeq \left(\sum_{k} |U_{ek}|^2 \sum_{j} |\lambda_{jk}|^2\right)^{1/2} < 0.6 \cdot 10^{-11} \mu_B \ (90\% \, C.L.)
$$

Giunti Studenikin 1403.6344 XENON 2207.11330, LZ 2207.03764

* Stellar energy loss (red giant branch of globular clusters)

 $\lambda_{\nu} \leq 0.1 \cdot 10^{-11} \mu_B (95\% C.L.)$

Capozzi Raffelt 2007.03694

* Neutrino-to-antineutrino conversion in solar magnetic field

$$
\lambda_{\nu} \lesssim 500 \cdot 10^{-11} \mu_B \left[\frac{kG}{B} \right] \ (90\% \, C.L.)
$$

KamLAND 2108.08527 Akhmedov Martínez-Miravé 2207.04516 $\mu_B \equiv \frac{e}{2m_e}$

- indirect (neutrinos not observed)

- effective combination of flavours
- insensitive to lepton number
- large systematic uncertainties ?

- sensitive to lepton number violation

- large uncertainty on value of solar magnetic field

ν dipole @ future hadron colliders

ν dipole @ future hadron colliders

Recasting an LHC analysis for the same final state. After selection cuts: **signal** efficiency ~ 0.5 and **background** (mostly from V V i i) ~ 10 fb [reducible]

ATLAS 2403.15016

 $HL - LHC$ {3 ab⁻¹} $|\lambda_{e\mu}|/\mu_B < 2.2 \cdot 10^{-7}$ [3.8 $\cdot 10^{-8}$] $@2\sigma$ $\text{FCC} - \text{hh} \ \{30 \text{ ab}^{-1}\}\$ $|\lambda_{e\mu}|/\mu_B < 3.8 \cdot 10^{-8}$ [2.0 $\cdot 10^{-9}$] ω 2σ

Sensitivity about **2-3 orders of magnitude weaker than current bounds**

ν dipole @ future muon collider (I)

Illustrative for \sim 100 diagrams

2 leptons (**same-sign different-flavour)** + 2 fat jets (**W into hadrons**)

Clean, unambiguous signal of lepton number and flavour violation

ν dipole @ future muon collider (I)

Illustrative for \sim 100 diagrams

2 leptons (**same-sign different-flavour)** + 2 fat jets (**W into hadrons**)

Clean, unambiguous signal of lepton number and flavour violation

Including acceptance cuts & reconstruction efficiency

Achievable integrated luminosity for 5-years data taking :

$$
\mathcal{L}=10\left(\frac{\sqrt{s}}{10\,\text{TeV}}\right)^2\text{ab}^{-1}
$$

ν dipole @ future muon collider (I)

 μ^-

Illustrative for \sim 100 diagrams

2 leptons (**same-sign different-flavour)** + 2 fat jets (**W into hadrons**)

Clean, unambiguous signal of lepton number and flavour violation

Including acceptance cuts & reconstruction efficiency

Achievable integrated luminosity for 5-years data taking :

$$
\mathcal{L}=10\left(\frac{\sqrt{s}}{10\,\text{TeV}}\right)^2\text{ab}^{-1}
$$

Signal **simulation & reconstruction** (Madgraph, Pythia8, FastJet, ...) Same for background (mostly from **W W µ⁺ µ** & **W W W W**) ~ 1 ab [reducible]

ν dipole @ future muon collider (II)

Improving discrimination by **kinematic variables**

Signal events have **higher** $p_T \&$ are **more central**

With tailored cuts, **background down to** \sim **0.1 ab** transverse

ν dipole @ future muon collider (II)

further background rejection,

improved lepton identification

ν mass @ future muon collider

 μ^-

 e^{-}

 W^+

 W^+

$$
\mathcal{L} \supset \frac{1}{2} \nu_{\alpha} m_{\alpha\beta} \nu_{\beta}
$$

0 ν 2 β - decay : $m_{ee} \lesssim 0.1 \text{ eV}$
LHC (FCC - hh) : $m_{e\mu,\mu\mu} \lesssim 10 \text{ (1) GeV}$

ATLAS 2305.14931 Fuks Neundorf Peters Ruiz Saimpert 2012.09882

ν mass @ future muon collider

$$
\mathcal{L} \supset \frac{1}{2} \nu_{\alpha} m_{\alpha\beta} \nu_{\beta}
$$

0 ν 2 β - decay : $m_{ee} \lesssim 0.1 \text{ eV}$
LHC (FCC - hh) : $m_{e\mu,\mu\mu} \lesssim 10$ (1) GeV

ATLAS 2305.14931 Fuks Neundorf Peters Ruiz Saimpert 2012.09882

For **meμ** same analysis as for the dipole **λeμ**

For $m_{\mu\nu}$ similar selection, but \sim 5 times larger background (W W μ^+ μ)

ν mass @ future muon collider

$$
\mathcal{L} \supset \frac{1}{2} \nu_{\alpha} m_{\alpha\beta} \nu_{\beta}
$$

0 ν 2 β - decay : $m_{ee} \lesssim 0.1 \text{ eV}$
LHC (FCC - hh) : $m_{e\mu,\mu\mu} \lesssim 10 (1) \text{ GeV}$

ATLAS 2305.14931 Fuks Neundorf Peters Ruiz Saimpert 2012.09882

For **meμ** same analysis as for the dipole **λeμ**

For $m_{\mu\nu}$ similar selection, but \sim 5 times larger background (W W μ^+ μ)

Improvement up to 5 orders of magnitude !

Still far above the neutrino mass scale ...

A dipole for sterile neutrinos

Effective Field Theory for **SM + 2 sterile neutrinos N**_{1,2}

$$
N = \begin{pmatrix} N_1 \\ N_2 \end{pmatrix} \qquad \begin{array}{c} \mathcal{L}_N = i N_i^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \delta_{ij} N_j \\ \frac{1}{2} N_i \mathcal{M}_{ij} N_j - \tilde{H}^{\dagger} \ell_{\alpha} Y_{\alpha i} N_i + h.c. \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \end{array} + \qquad \frac{1}{2} \left(d N_i \sigma^{\mu \nu} \epsilon_{ij} N_j B_{\mu \nu} + h.c. \right) + \dots \end{array}
$$

A dipole for sterile neutrinos

Effective Field Theory for **SM + 2 sterile neutrinos N1,2**

$$
N = \begin{pmatrix} N_1 \\ N_2 \end{pmatrix} \qquad \begin{array}{rcl} \mathcal{L}_N & = & iN_i{}^\dagger \bar{\sigma}^\mu \partial_\mu \delta_{ij} N_j \\ & - & \left(\frac{1}{2} N_i \mathcal{M}_{ij} N_j - \tilde{H}^\dagger \ell_\alpha Y_{\alpha i} N_i + h.c. \right) \\ & + & \frac{1}{2} \left(d \, N_i \sigma^{\mu \nu} \epsilon_{ij} N_j \, B_{\mu \nu} + h.c. \right) + \dots \end{array}
$$

How large can this dipole be ?

$$
d \simeq \frac{g'}{16\pi^2} \frac{g_\star^2}{m_\star} \simeq \frac{1}{3\text{TeV}} \left(\frac{g_\star}{4\pi}\right)^2 \left(\frac{\text{TeV}}{m_\star}\right)
$$

A dipole for sterile neutrinos

Effective Field Theory for **SM + 2 sterile neutrinos N1,2**

$$
N = \begin{pmatrix} N_1 \\ N_2 \end{pmatrix} \qquad \begin{array}{rcl} \mathcal{L}_N & = & iN_i{}^\dagger \bar{\sigma}^\mu \partial_\mu \delta_{ij} N_j \\ & - & \left(\frac{1}{2} N_i \mathcal{M}_{ij} N_j - \tilde{H}^\dagger \ell_\alpha Y_{\alpha i} N_i + h.c. \right) \\ & + & \frac{1}{2} \left(d \, N_i \sigma^{\mu \nu} \epsilon_{ij} N_j \, B_{\mu \nu} + h.c. \right) + \dots \end{array}
$$

How large can this dipole be ? $d \simeq \frac{g'}{16\pi^2} \frac{g_\star^2}{m_\star} \simeq \frac{1}{3\text{TeV}} \left(\frac{g_\star}{4\pi}\right)^2 \left(\frac{\text{TeV}}{m_\star}\right)$

U(1)_L conserving limits a) $L(N_{1,2}) = 0$: zero Yukawas, no active-sterile mixing, $M_{1,2}$ arbitrary **Barducci Bertuzzo Taoso Toni 2022**

b)
$$
L(N_1) = -L(N_2) = 1
$$
:
\n
$$
M_{\nu} = \begin{pmatrix} 0 & 0 & m \\ 0 & 0 & M \\ m & M & 0 \end{pmatrix} \qquad m_{\alpha} \equiv Y_{2\alpha} \frac{v}{\sqrt{2}} \qquad s_{\alpha} \simeq \frac{m_{\alpha}}{M} \qquad M_i \simeq M
$$

Bounds on active-sterile mixing

In the U(1)^L limit m_ν = 0, still mixing is constrained by a variety of lepton precision measurements

* **Indirect bounds** (on sterile neutrinos heavier than charged leptons) :

$$
s_e^2 \lesssim 10^{-3}, \qquad s_\mu^2 \lesssim 10^{-3}, \qquad s_\tau^2 \lesssim 3 \cdot 10^{-3}
$$

if $s_e \simeq s_\mu$, then $s_{e,\mu}^2 \lesssim 10^{-5} [10^{-7}]$

Coy Frigerio 2019,2022

Bounds on active-sterile mixing

In the U(1)L limit m_ν = 0, still mixing is constrained by a variety of lepton precision measurements

* **Indirect bounds** (on sterile neutrinos heavier than charged leptons) :

$$
s_e^2 \lesssim 10^{-3}, \qquad s_\mu^2 \lesssim 10^{-3}, \qquad s_\tau^2 \lesssim 3 \cdot 10^{-3}
$$

if $s_e \simeq s_\mu$, then $s_{e,\mu}^2 \lesssim 10^{-5} [10^{-7}]$

Coy Frigerio 2019,2022

* **Direct searches** for sterile neutrinos :

 $\begin{array}{ll} \mbox{for}\ \ 2\ \mbox{GeV}\lesssim M_D\lesssim 80\ \mbox{GeV}\,,\quad s_{e,\mu}^2\lesssim 10^{-5}\,,\quad s_\tau^2\lesssim 10^{-5}\,,\\ \mbox{for}\ \ 0.5\ \mbox{GeV}\lesssim M_D\lesssim 2\ \mbox{GeV}\,,\quad s_{e,\mu}^2\lesssim 10^{-7}\,,\quad s_\tau^2\lesssim 10^{-6}\,,\\ \mbox{for}\ \ 0.2\ \mbox{GeV}\lesssim M_D\lesssim 0.5\ \mbox{GeV}\,,\, s_{e,\mu}^2\lesssim 10^{-9}\,,$

Snowmass Review 2203.08039

Bounds on active-sterile mixing

In the U(1)L limit m_ν = 0, still mixing is constrained by a variety of lepton precision measurements

* **Indirect bounds** (on sterile neutrinos heavier than charged leptons) :

$$
s_e^2 \lesssim 10^{-3}, \qquad s_\mu^2 \lesssim 10^{-3}, \qquad s_\tau^2 \lesssim 3 \cdot 10^{-3}
$$

if $s_e \simeq s_\mu$, then $s_{e,\mu}^2 \lesssim 10^{-5} [10^{-7}]$

Coy Frigerio 2019,2022

* **Direct searches** for sterile neutrinos :

Snowmass Review 2203.08039

Departing from the U(1)L limit , assuming oscillation data are reproduced by **N1,2 seesaw** :

normal ordering $(m_1 < m_2 < m_3):$ $\hat{s}_e^2 \leq 0.1$, $0.25 \leq \hat{s}_u^2 \leq 0.85$, $\hat{s}_\tau^2 \simeq 1 - \hat{s}_u^2$, inverted ordering $(m_3 < m_1 < m_2)$: $0.05 \lesssim \hat{s}_{e}^2 \lesssim 0.95$, $\hat{s}_{\mu}^2 \simeq \hat{s}_{\tau}^2 \simeq 0.5(1 - \hat{s}_{e}^2)$,

Blennow Fernández-Martínez Hernández-García Lopéz-Pavón Marcano Naredo-Tuero et al. 2306.01040

 $\hat{s}_{\alpha}^2 \equiv \frac{s_{\alpha}^2}{\sum_{\beta} s_{\beta}^2}$

Sterile production & decay

Beam-dump experiments (SHiP, NA62, CHARM, …): mesons from protons on target

Barducci Bertuzzo Taoso Toni Ternes 2024

Photons with $E > 1$ GeV can be seen in the detector calorimeter

Sterile production & decay

Beam-dump experiments (SHiP, NA62, CHARM, …): mesons from protons on target

Production both from dipole & active-sterile mixing Photon signal from **decays** via dipole only

Photons with $E > 1$ GeV can be seen in the detector calorimeter N_2 at SHiP – mixing with τ flavor (δ = 0) 10^{-3} $m₁ = 400$ GeV, $q₂ = 4\pi$ $s_r^2 = 10^{-6}$ 10^{-4} $m_z = 400$ GeV, $q_z = 1$ 10^{-5} d [GeV⁻¹] 10^{-6} $M_1 = 3$ GeV $M_1 = 1$ GeV N_{pot} = 6 \cdot 10²⁰ 10^{-7} $M_1 = 0.3$ GeV $E_{pot} \doteq 400 \text{GeV}$ $N_{\text{dipole}} > N_{\text{mixing}}$ $L_{initial} = 33$ m $\Gamma_{\text{dipole}} > \Gamma_{\text{mixing}}$ $L_{final} = 85$ m 10^{-8} 10^{-4} 10^{-6} 10^{-5} 10^{-3} 10^{-7} 10^{-2} $|\theta_{\tau}|$

Future experimental sensitivity (I)

Future experimental sensitivity (I)

Future experimental sensitivity (II)

$$
\delta \equiv \frac{M_2 - M_1}{M_2 + M_1}
$$

Future experimental sensitivity (II)

with E.Bertuzzo

with E.Bertuzzo

Future experimental sensitivity (III)

Mixing with τ flavour

$$
N_D\to\nu_\tau\gamma
$$

Future experimental sensitivity (III)

with E.Bertuzzo

… waiting for some ν light

LE RAYON VERT Jules Verne, 1882

Eric Rohmer, 1986