Some novel searches for neutrino dipole moments

Michele Frigerio

Laboratoire Charles Coulomb, CNRS & Université de Montpellier

* Muon collider probes of Majorana neutrino dipole moments and masses with **Natascia Vignaroli**, arXiv:2409.02721

* Testing the dipole moment of GeV-scale sterile neutrinos with **Enrico Bertuzzo**, arXiv:241x.xxxx

Baryon & Lepton Number Violation 2024 KIT Karlsruhe – 8 / 11 October

Searching for new physics ...

THE ROAD Corman McCarthy, 2006 Joe Penhall, 2009

Neutrinos: masses vs dipoles

Two Weyl spinors : $u = \left(egin{array}{c}
u_e \\

u_\mu \end{array} \right)$ Flavour symmetry $SU(2)_F$: $u \sim 2_F$

 $\mathcal{L} \supset \nu_{\alpha}^{\dagger} \, i \bar{\sigma}^{\mu} \partial_{\mu} \, \delta_{\alpha\beta} \, \nu_{\beta}$

Kinetic operator: marginal (dim = 4), $\Delta L = 0$, preserves SU(2)_F

Neutrinos: masses vs dipoles

Two Weyl spinors : $\nu = \left(egin{array}{c} \nu_e \\ \nu_\mu \end{array}
ight)$ Flavour symmetry $SU(2)_F$: $u \sim 2_F$

 $\mathcal{L} \supset \nu_{\alpha}^{\dagger} \, i \bar{\sigma}^{\mu} \partial_{\mu} \, \delta_{\alpha\beta} \, \nu_{\beta}$

Kinetic operator: marginal (dim = 4), $\Delta L = 0$, preserves SU(2)_F

Neutrinos: masses vs dipoles

Two Weyl spinors : $u = \left(egin{array}{c}
u_e \\

u_\mu \end{array} \right)$ Flavour symmetry $SU(2)_F$: $u \sim 2_F$

 $\mathcal{L} \supset \nu_{\alpha}^{\dagger} \, i \bar{\sigma}^{\mu} \partial_{\mu} \, \delta_{\alpha\beta} \, \nu_{\beta}$

Kinetic operator: marginal (dim = 4), $\Delta L = 0$, preserves SU(2)_F

$$\mathcal{L} \supset \frac{1}{2} \nu_{\alpha} m_{\alpha\beta} \nu_{\beta} + h.c. \qquad m_{\alpha\beta} = m_{\beta\alpha}$$

$$m \equiv m_A(\epsilon \sigma_A)$$

$$\textbf{Mass operator: relevant (dim = 3), \Delta L = 2, breaks SU(2)_F$$

$$m_A real preserves U(1)_F : one Dirac fermion$$

$$m_A \sim 3_F$$

$$m_A \sim 3_F$$

$$\mathcal{L} \supset \frac{1}{2} \nu_{\alpha} \, \sigma^{\mu\nu} \, \lambda_{\alpha\beta} \, \nu_{\beta} \, F_{\mu\nu} + h.c. \qquad \lambda_{\alpha\beta} = -\lambda_{\beta\sigma}$$

Dipole operator: irrelevant (dim = 5), $\Delta L = 2$, preserves SU(2)_F

 \Rightarrow small mass and large dipole is technically natural !

 $\lambda \sim 1_F$

v dipole from SM EFT operators

 Δ L = 2 operators in the SM effective field theory :

dimension-5 $\mathcal{L}_5 = C^5 \mathcal{O}_5$ $(\mathcal{O}_5)_{\alpha\beta} = (\overline{\ell_{L\alpha}^c} \epsilon H)(H^T \epsilon l_{L\beta})$ $\xrightarrow{\nu_{\alpha}} \times \xrightarrow{\nu_{\beta}}$

v dipole from SM EFT operators

 Δ L = 2 operators in the SM effective field theory :

v dipole from SM EFT operators

 Δ L = 2 operators in the SM effective field theory :

Some current bounds on v dipole

* Solar neutrino elastic scattering on nuclei (photon exchange)

$$\lambda_{\nu} \simeq \left(\sum_{k} |U_{ek}|^2 \sum_{j} |\lambda_{jk}|^2\right)^{1/2} < 0.6 \cdot 10^{-11} \mu_B \ (90\% \ C.L.)$$

Giunti Studenikin 1403.6344

XENON 2207.11330, LZ 2207.03764

 $\mu_B \equiv \frac{e}{2m_e}$

- indirect (neutrinos not observed)
- effective combination of flavours
- insensitive to lepton number
- large systematic uncertainties ?

* Stellar energy loss (red giant branch of globular clusters)

 $\lambda_{\nu} \lesssim 0.1 \cdot 10^{-11} \mu_B \ (95\% C.L.)$

Capozzi Raffelt 2007.03694

Some current bounds on v dipole

* Solar neutrino elastic scattering on nuclei (photon exchange)

$$\lambda_{\nu} \simeq \left(\sum_{k} |U_{ek}|^2 \sum_{j} |\lambda_{jk}|^2\right)^{1/2} < 0.6 \cdot 10^{-11} \mu_B \ (90\% \ C.L.)$$

Giunti Studenikin 1403.6344

XENON 2207.11330, LZ 2207.03764

* Stellar energy loss (red giant branch of globular clusters)

 $\lambda_{\nu} \lesssim 0.1 \cdot 10^{-11} \mu_B \ (95\% C.L.)$

Capozzi Raffelt 2007.03694

* Neutrino-to-antineutrino conversion in solar magnetic field

$$\lambda_{\nu} \lesssim 500 \cdot 10^{-11} \mu_B \left[\frac{kG}{B}\right] \quad (90\% \, C.L.)$$

KamLAND 2108.08527 Akhmedov Martínez-Miravé 2207.04516 $\mu_B \equiv \frac{e}{2m_e}$

- indirect (neutrinos not observed)

- effective combination of flavours

- insensitive to lepton number

- large systematic uncertainties ?

- sensitive to lepton number violation

- large uncertainty on value of solar magnetic field

v dipole @ future hadron colliders

v dipole @ future hadron colliders

Recasting an LHC analysis for the same final state. After selection cuts: **signal** efficiency ~ 0.5 and **background** (mostly from V V j j) ~ 10 fb [reducible]

ATLAS 2403.15016

HL - LHC{3 ab^{-1}} $|\lambda_{e\mu}|/\mu_B < 2.2 \cdot 10^{-7} [3.8 \cdot 10^{-8}]$ @ 2σ FCC - hh{30 ab^{-1}} $|\lambda_{e\mu}|/\mu_B < 3.8 \cdot 10^{-8} [2.0 \cdot 10^{-9}]$ @ 2σ

Sensitivity about 2-3 orders of magnitude weaker than current bounds

v dipole @ future muon collider (I)

Illustrative for ~ 100 diagrams

2 leptons (**same-sign different-flavour)** + 2 fat jets (**W into hadrons**)

Clean, unambiguous signal of lepton number and flavour violation

v dipole @ future muon collider (I)

2 leptons (**same-sign different-flavour)** + 2 fat jets (**W into hadrons**)

Clean, unambiguous signal of lepton number and flavour violation

Including acceptance cuts & reconstruction efficiency

Achievable integrated luminosity for 5-years data taking :

$$\mathcal{L} = 10 \left(\frac{\sqrt{s}}{10 \,\mathrm{TeV}}\right)^2 \mathrm{ab}^{-1}$$

v dipole @ future muon collider (I)

Illustrative for ~ 100 diagrams

2 leptons (**same-sign different-flavour)** + 2 fat jets (**W into hadrons**)

Clean, unambiguous signal of lepton number and flavour violation

Including acceptance cuts & reconstruction efficiency

Achievable integrated luminosity for 5-years data taking :

$$\mathcal{L} = 10 \left(\frac{\sqrt{s}}{10 \,\mathrm{TeV}}\right)^2 \mathrm{ab}^{-1}$$

Signal simulation & reconstruction (Madgraph, Pythia8, FastJet, ...) Same for background (mostly from W W $\mu^+ \mu^-$ & W W W W) ~ 1 ab [reducible]

v dipole @ future muon collider (II)

Improving discrimination by **kinematic variables**

Signal events have **higher p**_T & are **more central**

With tailored cuts, background down to ~ 0.1 ab

v dipole @ future muon collider (II)

 μ_B

v mass @ future muon collider

$$\mathcal{L} \supset rac{1}{2} \,
u_{lpha} \, m_{lphaeta} \,
u_{eta}$$
 $0
u2eta - ext{decay} : m_{ee} \lesssim 0.1 ext{ eV}$
 $ext{LHC (FCC - ext{hh}) : } m_{e\mu,\mu\mu} \lesssim 10 ext{ (1) GeV}$

ATLAS 2305.14931 Fuks Neundorf Peters Ruiz Saimpert 2012.09882

v mass @ future muon collider

$$\mathcal{L} \supset \frac{1}{2} \nu_{lpha} m_{lpha eta}
u_{eta}$$

 $0 \nu 2 eta - ext{decay} : m_{ee} \lesssim 0.1 ext{ eV}$
LHC (FCC - hh) : $m_{e\mu,\mu\mu} \lesssim 10 ext{ (1) GeV}$

ATLAS 2305.14931 Fuks Neundorf Peters Ruiz Saimpert 2012.09882

For $\boldsymbol{m}_{_{e\mu}}$ same analysis as for the dipole $\boldsymbol{\lambda}_{_{e\mu}}$

For \boldsymbol{m}_{uu} similar selection, but ~ 5 times larger background (W W $\mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -})$

v mass @ future muon collider

$$\mathcal{L} \supset \frac{1}{2} \nu_{\alpha} m_{lpha eta} \nu_{eta}$$

 $0\nu 2eta - ext{decay} : m_{ee} \lesssim 0.1 ext{ eV}$
LHC (FCC - hh) : $m_{e\mu,\mu\mu} \lesssim 10 ext{ (1) GeV}$

ATLAS 2305.14931 Fuks Neundorf Peters Ruiz Saimpert 2012.09882

For $\mathbf{m}_{_{eu}}$ same analysis as for the dipole $\mathbf{\lambda}_{_{eu}}$

For \boldsymbol{m}_{uu} similar selection, but ~ 5 times larger background (W W $\mu^{\scriptscriptstyle +}$ $\mu^{\scriptscriptstyle -})$

Improvement up to 5 orders of magnitude !

Still far above the neutrino mass scale ...

A dipole for sterile neutrinos

Effective Field Theory for SM + 2 sterile neutrinos $N_{1,2}$

$$\mathcal{L}_{N} = i N_{i}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \delta_{ij} N_{j}$$

$$N = \begin{pmatrix} N_{1} \\ N_{2} \end{pmatrix} - \begin{pmatrix} \frac{1}{2} N_{i} \mathcal{M}_{ij} N_{j} - \tilde{H}^{\dagger} \ell_{\alpha} Y_{\alpha i} N_{i} + h.c. \end{pmatrix}$$

$$+ \frac{1}{2} (d N_{i} \sigma^{\mu\nu} \epsilon_{ij} N_{j} B_{\mu\nu} + h.c.) + \dots$$

A dipole for sterile neutrinos

Effective Field Theory for SM + 2 sterile neutrinos $N_{1,2}$

$$\mathcal{L}_{N} = i N_{i}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \delta_{ij} N_{j}$$

$$N = \begin{pmatrix} N_{1} \\ N_{2} \end{pmatrix} - \begin{pmatrix} \frac{1}{2} N_{i} \mathcal{M}_{ij} N_{j} - \tilde{H}^{\dagger} \ell_{\alpha} Y_{\alpha i} N_{i} + h.c. \end{pmatrix}$$

$$+ \frac{1}{2} (d N_{i} \sigma^{\mu\nu} \epsilon_{ij} N_{j} B_{\mu\nu} + h.c.) + \dots$$

How large can this dipole be ?

$$d \simeq \frac{g'}{16\pi^2} \frac{g_\star^2}{m_\star} \simeq \frac{1}{3\text{TeV}} \left(\frac{g_\star}{4\pi}\right)^2 \left(\frac{\text{TeV}}{m_\star}\right)$$

A dipole for sterile neutrinos

Effective Field Theory for SM + 2 sterile neutrinos $N_{1,2}$

How large can this dipole be ? $d \simeq \frac{g'}{16\pi^2} \frac{g_{\star}^2}{m_{\star}} \simeq \frac{1}{3\text{TeV}} \left(\frac{g_{\star}}{4\pi}\right)^2 \left(\frac{\text{TeV}}{m_{\star}}\right)$

b) L(N) = -L(N) = 1:

U(1)_L conserving limits a) L(N_{1,2}) = 0 : zero Yukawas, no active-sterile mixing, M_{1,2} arbitrary Barducci Bertuzzo Taoso Toni 2022

$$M_{\nu} = \begin{pmatrix} 0 & 0 & m \\ \hline 0 & 0 & M \\ m & M & 0 \end{pmatrix} \qquad \qquad m_{\alpha} \equiv Y_{2\alpha} \frac{v}{\sqrt{2}} \qquad s_{\alpha} \simeq \frac{m_{\alpha}}{M} \qquad M_{i} \simeq M$$

Bounds on active-sterile mixing

In the U(1)_L limit $m_v = 0$, still mixing is constrained by a variety of lepton precision measurements

* Indirect bounds (on sterile neutrinos heavier than charged leptons) :

$$s_e^2 \lesssim 10^{-3}$$
, $s_\mu^2 \lesssim 10^{-3}$, $s_\tau^2 \lesssim 3 \cdot 10^{-3}$
if $s_e \simeq s_\mu$, then $s_{e,\mu}^2 \lesssim 10^{-5} [10^{-7}]$

Coy Frigerio 2019,2022

Bounds on active-sterile mixing

In the U(1)_L limit $m_v = 0$, still mixing is constrained by a variety of lepton precision measurements

* Indirect bounds (on sterile neutrinos heavier than charged leptons) :

$$s_e^2 \lesssim 10^{-3}$$
, $s_\mu^2 \lesssim 10^{-3}$, $s_\tau^2 \lesssim 3 \cdot 10^{-3}$
if $s_e \simeq s_\mu$, then $s_{e,\mu}^2 \lesssim 10^{-5} [10^{-7}]$

Coy Frigerio 2019,2022

* Direct searches for sterile neutrinos :

for
$$2 \text{ GeV} \lesssim M_D \lesssim 80 \text{ GeV}$$
, $s_{e,\mu}^2 \lesssim 10^{-5}$, $s_{\tau}^2 \lesssim 10^{-5}$,
for $0.5 \text{ GeV} \lesssim M_D \lesssim 2 \text{ GeV}$, $s_{e,\mu}^2 \lesssim 10^{-7}$, $s_{\tau}^2 \lesssim 10^{-6}$,
for $0.2 \text{ GeV} \lesssim M_D \lesssim 0.5 \text{ GeV}$, $s_{e,\mu}^2 \lesssim 10^{-9}$, $s_{\tau}^2 \lesssim 10^{-5}$.

Snowmass Review 2203.08039

Bounds on active-sterile mixing

In the U(1)_L limit $m_v = 0$, still mixing is constrained by a variety of lepton precision measurements

* Indirect bounds (on sterile neutrinos heavier than charged leptons) :

$$s_e^2 \lesssim 10^{-3}$$
, $s_\mu^2 \lesssim 10^{-3}$, $s_\tau^2 \lesssim 3 \cdot 10^{-3}$
if $s_e \simeq s_\mu$, then $s_{e,\mu}^2 \lesssim 10^{-5} [10^{-7}]$

Coy Frigerio 2019,2022

* Direct searches for sterile neutrinos :

for	$2 \text{ GeV} \lesssim M_D \lesssim 80 \text{ GeV}$,	$s_{e,\mu}^2 \lesssim 10^{-5} ,$	$s_{ au}^2 \lesssim 10^{-5}$,
for	$0.5 \text{ GeV} \lesssim M_D \lesssim 2 \text{ GeV},$	$s_{e,\mu}^2 \lesssim 10^{-7} ,$	$s_\tau^2 \lesssim 10^{-6} ,$
for	$0.2 \text{ GeV} \lesssim M_D \lesssim 0.5 \text{ GeV}$,	$s_{e,\mu}^2 \lesssim 10^{-9}$,	$s_{ au}^2 \lesssim 10^{-5}$.

Snowmass Review 2203.08039

Departing from the $U(1)_{L}$ limit, assuming oscillation data are reproduced by $N_{1,2}$ seesaw:

normal ordering $(m_1 < m_2 < m_3)$: $\hat{s}_e^2 \lesssim 0.1$, $0.25 \lesssim \hat{s}_\mu^2 \lesssim 0.85$, $\hat{s}_\tau^2 \simeq 1 - \hat{s}_\mu^2$, inverted ordering $(m_3 < m_1 < m_2)$: $0.05 \lesssim \hat{s}_e^2 \lesssim 0.95$, $\hat{s}_\mu^2 \simeq \hat{s}_\tau^2 \simeq 0.5(1 - \hat{s}_e^2)$,

Blennow Fernández-Martínez Hernández-García Lopéz-Pavón Marcano Naredo-Tuero et al. 2306.01040

 $\hat{s}_{\alpha}^2 \equiv \frac{s_{\alpha}^2}{\sum_{\beta} s_{\beta}^2}$

Sterile production & decay

Beam-dump experiments (SHiP, NA62, CHARM, ...): mesons from protons on target

Barducci Bertuzzo Taoso Toni Ternes 2024

Photons with E > 1 GeV can be seen in the detector calorimeter

Sterile production & decay

Beam-dump experiments (SHiP, NA62, CHARM, ...): mesons from protons on target

Production both from dipole & active-sterile mixing Photon signal from decays via dipole only

Photons with E > 1 GeV can be seen in the detector calorimeter N_2 at SHiP – mixing with τ flavor (δ = 0) 10^{-3} $m_{*} = 400 \text{ GeV}, q_{*} = 4\pi$ $s_{r}^{2} = 10^{-6}$ 10^{-4} m_{*} = 400 GeV, g_{*}=1 10⁻⁵ d [GeV⁻¹] 10^{-6} M1 = 3 GeV M1 = 1 GeV $N_{pot} = 6 \cdot 10^{20}$ 10-7 M1 = 0.3 GeV $E_{pot} = 400 \text{GeV}$ N_{dipole} > N_{mixing} $L_{initial} = 33 \mathrm{m}$ $\Gamma_{dipole} > \Gamma_{mixing}$ $L_{final} = 85 \mathrm{m}$ 10-8 10⁻⁵ 10-6 10⁻⁴ 10⁻³ 10^{-7} 10^{-2} $|\theta_{\tau}|$

Future experimental sensitivity (I)

with E.Bertuzz

Future experimental sensitivity (I)

Future experimental sensitivity (II)

$$\delta \equiv \frac{M_2 - M_1}{M_2 + M_1}$$

Future experimental sensitivity (II)

with E.Bertuzz

Future experimental sensitivity (III)

Mixing with τ flavour

$$N_D \to \nu_\tau \gamma$$

Future experimental sensitivity (III)

with E.Bertuzzo

... waiting for some v light

LE RAYON VERT Jules Verne, 1882 Eric Rohmer, 1986