

Hyper-Kamiokande

A Nucleon Decay Discovery Experiment

Volodymyr Takhistov

(on behalf of the Hyper-Kamiokande Collaboration) QUP & Theory Center, KEK & SOKENDAI & Kavli IPMU, U. Tokyo

Do protons decay?

- Lightest baryon (proton) stable
- B-number proposed to explain matter stability [Weyl, 1929; Stueckelberg, 1939; Wigner, 1949]
- In Standard Model (SM) B not fundamental, accidental global symmetry But... long history of such symmetries later found violated (e.g. C, P)
- Already in SM B is violated by non-perturbative effects [t'Hooft, 1976]
- SM incomplete, **B** viol. in many theories (baryogenesis, GUTs, SUSY, extra-dim...)
- Global symmetries expected to be violated by quantum gravity
- Proton decay can be essential for fate of astrophysical objects [Adams, Laughlin, 1997]

Grand Unified Theories (GUTs)

- SU(5) SO(10)Unify SM gauge groups [Georgi, Glashow, 1974; Fritzch, Minkowski, 1975] \rightarrow explain charge quantization, coupling unification, anomaly cancellation... **Leptons** \leftrightarrow **quarks** interact \rightarrow nucleon decay SUSY SU(5) $p \to e^+ \pi^0$ SU(5)typically dominant: $p \to \overline{\nu} K^{\dagger}$ u \tilde{H} $au = rac{1}{\Gamma} \propto \left[rac{M_s M_T}{lpha^2}
 ight]^2$ $au = rac{1}{\Gamma} \propto \left[rac{M_X^2}{lpha^2}
 ight]^2$ ppd U \rightarrow prediction $\tau \sim 10^{29-36}$ yrs \rightarrow prediction $\tau \sim 10^{29-36}$ yrs \rightarrow minimal model ruled out \rightarrow minimal (TeV-)SUSY model ruled out
 - (IMB-3, Kamiokande, Super-K)

Big uncertainties in predictions, very many models (e.g. [Nath, Perez, 2006] review)

by Super-K [Kobayashi+ (SK), 2005]

How to search?

- Already in 1950s, Goldhaber argued on general grounds $\tau > 10^{18}$ yrs \rightarrow Many searches with different methods since
- Proton lives $\tau > 10^{30}$ yrs, how to test?
 - Look at 1 proton VERY long time X

- Large-scale water Cherenkov detectors excellent targets
 - Cheap, easily scalable (e.g. iron calorimeters are not)
 - Proven technology
 - H₂O includes 2 hydrogen "free protons" (high selection efficiency, low uncertainty)

Super-Kamiokande (WC)

Water Cherenkov Detection and State-of-the-Art

current state-of-the-art

Super-Kamiokande (SK, Super-K) ~20+ years of data

real SK data (1998)

SK upgrade

work, 2018

$p \rightarrow e^+ \pi^0$ in Super-K

- Final state (positron + 2 gammas) is fully visible, easy to identify
 - \rightarrow can reconstruct proton mass/momentum, clean channel nearly background-free

Previous Super-K Searches Set Many World Best Limits

- SK already probed 25+ channels (incl. dinucleon decays..)
- Some candidates, no evidence of nucleon decays
 → many world best limits
- Analysis strategy depends on channel specifics
 → visible Cherenkov rings, backgrounds...

some missing energy, hard to reconstruct parent nucleons, lots of background

Into the Future with Hyper-Kamiokande (Hyper-K, HK)

Hyper-K Truly Spectacular Multipurpose Experiment

Volodymyr Takhistov (QUP, KEK)

Hyper-K Overview

- Next generation flagship neutrino observatory in Japan
- Big construction progress:
 - access tunnel \rightarrow done \checkmark
 - dome cavern \rightarrow done \checkmark
 - \circ cavern excavation \rightarrow underway
- HK dome Oct. 3, 2023

• Engineering marvel - largest man-made cavern in world !

	Super-K	Hyper-K	
Site	Mozumi	Tochibora	
Overburden	2780 m.w.e.	1700 m.w.e.	
Number of ID PMTs	11129	20000	
Photo-coverage	40%	20% (×2 efficiency)	
Mass / Fiducial Mass	50 kton / 22.5 kton	258 kton / 186 kton	

Hyper-K Status Schedule

• Construction extended by 6 months, primarily due to top structure changes

Hyper-K Collaboration

22 countries, 104 institutes, ~590 people (Aug. 2024)

► Total ← Japan ← Oversea

600

Hyper-K as Nucleon Decay Discovery Experiment

- Fiducial Mass ~ 8 x SK: 190 kton (HK) vs. 22.5 kton (SK)
- Upgraded photo sensors (Box & Line PMT)
 - Photon detection efficiency 2x better vs. SK
 - Timing resolution 2x better vs. SK
 - Pressure tolerance 2x better vs. SK

$p \rightarrow e^+ \pi^0$ in Hyper-K

Assuming life. around SK limit $\sim {
m few} imes 10^{34} {
m yrs}$

Probe at 3 σ lifetime $au \sim 10^{35} {
m yrs}$

HK background ½ of SK (improved n-tag with upgraded PMTs...)

$p \rightarrow vK^+$ in Hyper-K

- Invisible v, can't reconstruct proton
- Most K⁺ are below Cherenkov threshold (560 MeV)
- 3 different analyses based on K⁺ decays

 $\begin{array}{c} \mathsf{K}^{\scriptscriptstyle +} \rightarrow \nu \mu^{\scriptscriptstyle +} : 64 \ \% \\ \mathsf{K}^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0} : 21 \ \% \end{array}$

• SK results at 365 kton*yr exposure show no evidence, limit $> 0.8 \times 10^{34} {
m yrs}$

Many New Search Opportunities, Hyper-K to Lead the Game

Many channels still never searched...

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$p \rightarrow e^- + e^+ + e^+$	0	793 [65]
$p \rightarrow e^- + e^+ + \mu^+$	0	529 [65]
$p \rightarrow e^+ + e^+ + \mu^-$	0	529* [65]
$p \rightarrow e^- + \mu^+ + \mu^+$	0	6 [64] (359* [65])
$p \rightarrow e^+ + \mu^- + \mu^+$	0	359 [65]
$p \rightarrow \mu^- + \mu^+ + \mu^+$	0	675 [65]
$p \rightarrow e^+ + 2\nu$	0,2	170 [81]
$p \rightarrow \mu^+ + 2\nu$	0,2	220 [81]
$p \rightarrow e^- + 2\pi^+$	2	$30 [62] (82^* [65])$
$p \rightarrow e^- + \pi^+ + \rho^+$	2	
$p \rightarrow e^- + K^+ + \pi^+$	2	75 [65]
$p \rightarrow e^+ + 2\gamma$	0	100 [82] (793* [65])
$p \rightarrow e^+ + \pi^- + \pi^+$	0	82 [65]
$p \rightarrow e^+ + \rho^- + \pi^+$	0	
$p \rightarrow e^+ + K^- + \pi^+$	0	75* [65]
$p \rightarrow e^+ + \pi^- + \rho^+$	0	
$p \rightarrow e^+ + \pi^- + K^+$	0	75* [65]
$p \rightarrow e^+ + 2\pi^0$	0	1.17 [65]
$p \rightarrow e^+ + \pi^0 + \eta$	0	
$p \rightarrow e^+ + \pi^0 + \rho^0$	0	
$p \rightarrow e^+ + \pi^0 + \omega$	0	
$p \to e^+ + \pi^0 + K^0$	0	
$p \rightarrow \mu^- + 2\pi^+$	2	$17 [62] (133^* [65])$
$p \rightarrow \mu^- + K^+ + \pi^+$	2	245 [65]
$p \rightarrow \mu^+ + 2\gamma$	0	529* [65]
$p \rightarrow \mu^+ + \pi^- + \pi^+$	0	133 [65]
$p \rightarrow \mu^+ + K^- + \pi^+$	0	245* [65]
$p \rightarrow \mu^+ + \pi^- + K^+$	0	245^{*} [65]
$p \rightarrow \mu^+ + 2\pi^0$	0	101 [65]
$p \rightarrow \mu^+ + \pi^0 + \eta$	0	
$p \rightarrow \mu^+ + \pi^0 + K^0$	0	
$p \rightarrow \nu + \pi^+ + \pi^0$	0,2	
$p \rightarrow \nu + \pi^+ + \eta$	0,2	
$p \rightarrow \nu + \pi^+ + \rho^0$	0,2	
$p \rightarrow \nu + \pi^+ + \omega$	0,2	
$p \rightarrow \nu + \pi^+ + K^0$	0,2	
$p \rightarrow \nu + \rho^+ + \pi^0$	0,2	
$p \rightarrow \nu + K^+ + \pi^0$	0.2	

			Chan
Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$	$n \rightarrow \nu$
$nn \rightarrow \pi^0 + \phi$	2		$n \rightarrow \nu$
$nn \rightarrow 2\eta$	2		$n \rightarrow \nu$
$nn \rightarrow \eta + \rho^0$	2		$n \rightarrow \nu$
$nn \rightarrow \eta + \omega$	2		$n \rightarrow 3$
$nn \rightarrow \eta + \eta'$	2		$n \rightarrow e$
$nn \rightarrow \eta + K^0$	2		$n \rightarrow e$
$nn \rightarrow \eta + K^{*,0}$			$n \rightarrow e$
$nn \rightarrow \eta + \phi$	2		$n \rightarrow e$
$nn \rightarrow 2\rho^0$	2		$n \rightarrow e$
$nn \rightarrow \rho^0 + \omega$	2		$n \rightarrow e$
$nn \rightarrow \eta' + \rho^0$	2	10	$n \rightarrow e$
$nn \rightarrow K^0 + \rho^0$	2		$n \rightarrow e$
$nn \rightarrow K^{*,0} + \rho^0$	2		$n \rightarrow e$
$nn \rightarrow \rho^0 + \phi$	2		$n \rightarrow e$
$nn \rightarrow \rho^- + \rho^+$	2		$n \rightarrow e$
$nn \rightarrow K^+ + \rho^-$	2		$\frac{n \rightarrow e}{n \rightarrow e}$
$nn \rightarrow K^{*,+} + \rho^{-}$	2		$\frac{n \rightarrow e}{n \rightarrow v}$
$nn \rightarrow K^- + \rho^+$	2		$\frac{n \rightarrow \mu}{n \rightarrow \mu}$
$nn \rightarrow K^{*,-} + \rho^+$			$n \rightarrow \mu$
$nn \rightarrow 2\omega$	2		$n \rightarrow \mu$
$nn \rightarrow \eta' + \omega$	2		$n \rightarrow \mu$
$nn \rightarrow K^0 + \omega$	2		$n \rightarrow \mu$
$nn \rightarrow K^{*,0} + \omega$	2		$n \rightarrow \mu$
$nn \rightarrow \omega + \phi$	2		$n \rightarrow \mu$
$nn \rightarrow \eta' + K^0$	2		$n \rightarrow \nu$
$nn \rightarrow \eta' + K^{*,0}$	2		$n \rightarrow \nu$
$nn \rightarrow K^- + K^+$	2 17	0^{*} [116]	$n \rightarrow \nu$
$nn \rightarrow K^+ + K^{*,-}$	2		$\frac{n \rightarrow \nu}{n \rightarrow \nu}$
$nn \rightarrow K^- + K^{*,+}$	2		$n \rightarrow \nu$
$nn \rightarrow 2K^0$	2		$\frac{n}{n \rightarrow \nu}$
$nn \rightarrow K^{*,0} + K^0$	2	12	$n \rightarrow \nu$
$nn \rightarrow K^0 + \phi$	2		$n \rightarrow \nu$
$nn \rightarrow 2K^{*,0}$			$n \rightarrow \nu$
1/8 1/8 +			-

[Heeck, **VT**, (2019)]

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$\mu \rightarrow \nu + e^- + e^+$	0,2	257 [65]
$\mu \rightarrow \nu + e^- + \mu^+$	0,2	83 [65]
$\mu \rightarrow \nu + e^+ + \mu^-$	0,2	83* [65]
$\mu \rightarrow \nu + \mu^- + \mu^+$	0,2	79 [65]
$1 \rightarrow 3\nu$	0,2,4	0.58 [83]
$a \rightarrow e^- + \pi^+ + \pi^0$	2	29 [62] (52* [65])
$a \rightarrow e^- + \pi^+ + \eta$	2	
$a \rightarrow e^- + \pi^+ + \rho^0$	2	
$a \rightarrow e^- + \pi^+ + \omega$	2	
$a \rightarrow e^- + \pi^+ + K^0$	2	
$a \rightarrow e^- + \rho^+ + \pi^0$	2	
$u \rightarrow e^- + K^+ + \pi^0$	2	
$u \to e^+ + \pi^- + \pi^0$	0	52 [65]
$a \rightarrow e^+ + \pi^- + \eta$	0	
$u \to e^+ + \pi^- + \rho^0$	0)
$u \to e^+ + \pi^- + \omega$	0	
$a \to e^+ + \pi^- + K^0$	0	18 02
$u \to e^+ + \rho^- + \pi^0$	0	
$a \to e^+ + K^- + \pi^0$	0	
$\mu \to \mu^- + \pi^+ + \pi^0$	2	24 [02] (74 [35])
$\mu \to \mu^- + \pi^+ + \eta$	2	
$\mu \to \mu^- + \pi^+ + K^0$	2)
$\mu \to \mu^- + K^+ + \pi^0$	2	
$\mu \to \mu^+ + \pi^- + \pi^0$	0	74 0
$\mu \rightarrow \mu^+ + \pi^- + \eta$	0	
$\mu \to \mu^+ + \pi^- + K^0$	0	/
$\mu \to \mu^+ + K^- + \pi^0$	0	
$\nu \rightarrow \nu + 2\gamma$	0,2	219 [65]
$\nu \rightarrow \nu + \pi^- + \pi^+$	0,2	\frown
$\nu \to \nu + \rho^- + \pi^+$	0,2	
$\mu \rightarrow \nu + K^- + \pi^+$	0,2	
$\mu \rightarrow \nu + \pi^- + \rho^+$	0,2	
$u \rightarrow \nu + \pi^- + K^+$	0,2	
$\mu \rightarrow \nu + 2\pi^0$	0,2	
$\mu \rightarrow \nu + \pi^0 + \eta$	0,2	/
$\mu \rightarrow \nu + \pi^0 + \rho^0$	0,2	
$\mu \rightarrow \nu + \pi^0 + \omega$	0,2	

Non-canonical channels with new particles in final states barely explored, very many ...

	$(\Delta B, \Delta L)$	Dim	Decay modes	New Field(s)
	(1, 1)	6	$p(n) \to \pi^{+(0)} N$	sterile neutrinos
	(1, -1)	7	$n \to N\gamma$ $p(n) \to \pi^{+(0)}N\gamma$	sterile neutrinos
	(1, 1)	7	$p \to e^+ \phi$ $p(n) \to e^+ \pi^{0(-)} \phi$	dark scalars, majorons
Examples	(1,1)	7	$ \begin{array}{l} n \rightarrow \nu X \\ p(n) \rightarrow \nu \pi^{+(0)} X \\ n \rightarrow e^+ \pi^- X \end{array} $	dark photons
	(1,1)	8	$\begin{array}{l} n \rightarrow \nu \phi \\ n \rightarrow e^+ \pi^- \phi \end{array}$	dark scalars, majorons
	(1, 1)	8	$ \begin{array}{l} n \rightarrow \nu a \\ p(n) \rightarrow e^+ \pi^{0(-)} a \\ p(n) \rightarrow e^+ \pi^{0(-)} a \end{array} $	axion-like particles
	(1, -1)	8	$n \to Na$ $p(n) \to \pi^{+(0)} Na$	axion-like particles with sterile neutrinos
	(1, 1)	9	$ \begin{array}{l} p \rightarrow e^+ \nu N \\ n \rightarrow e^+ e^- N \end{array} $	sterile neutrinos
	(1, 3)	9	$p \to e^+ N N$	sterile neutrino

[Fridell, Hati, VT, PRD Lett. (2024)]

Many ideas in literature, e.g. also induced nucleon decays ...

Volodymyr Takhistov (QUP, KEK)

Even More Nucleon Decay Targets: Monopoles & Q-Balls

- Heavy monopoles from unified theories can be captured by Sun and catalyze proton decay via Callan-Rubakov process producing neutrinos → can detect in HK
- Q-balls naturally appear from field instabilities in e.g. supersymmetric theories, can induce nucleon decay in HK when they carry baryon number

Hyper-K Excels in Many Areas, Including Oscillation Program

- For ~60% of δ_{CP} values, can discover δ_{CP} with 5 σ in 10 years (assuming mass ordering)
- For $\delta_{
 m CP}=\pm90^\circ$, can discover within 5 years
- Combination of beam + atmospheric neutrinos allows resolving degeneracies and offers good sensitivity to mass ordering

	$\sin^2 \theta_{23}$	Atmospheric neutrino	Atm + Beam
Mass	0.40	2.2 σ -	→ 3.8 σ
ordering	0.60	4.9 σ -	→ 6.2 σ
θ_{23}	0.45	2.2 σ -	→ 6.2 σ
octant	0.55	1.6 σ -	→ 3.6 σ

10 years with 1.3MW, normal mass ordering is assumed

HK can also give more constraints on atmospheric flux and cross sections \rightarrow help our understanding of the nucleon decay background

Volodymyr Takhistov (QUP, KEK)

Summary

- Nucleon decays offer unique opportunities to probe fundamental physics, often challenging to test otherwise
- Great success of Super-K WC experiment running for over 20 years enabled probing many nucleon decay process, with no evidence found and leading limits
- Hyper-K, as successor of Super-K, will spearhead nucleon decay searches. Plethora of processes, including completely new ones, are ripe to explore. Thanks to its versatility, Hyper-K will probe many of them with unprecedented sensitivity
- An excellent multipurpose experiment Hyper-K will play central role in many areas, including determination of remaining v-oscillation parameters

Let's enjoy exciting discoveries together