Baryon-number violation from the bottom up

John Gargalionis

Baryon and Lepton Number Violation 2024 @ KIT

Based on 2312.13361 with Arnau Bas i Beneito, Juan Herrero-García, Arcadi Santamaria and Michael A Schmidt

John Gargalionis

BLV – KIT

If we saw proton decay, how could we pin down the underlying model?

John Gargalionis

Paris LPENS

Feb 29, 2024

$$(b^{\dagger}\bar{\sigma}^{\mu}s)(\mu^{\dagger}\bar{\sigma}_{\mu}\mu)$$

$$(Q^{\dagger}\bar{\sigma}^{\mu}Q)(L^{\dagger}\bar{\sigma}_{\mu}L)$$

$$U_1^{\mu} \sim (\mathbf{3}, \mathbf{1}, 2/3)$$

$SU(4) \rightarrow SU(3) \times U(1)$

The CNAFFT predicte I and Dividiation

The SMEFT predicts
$$L$$
 and B violation

$$\mathcal{L} = \mathcal{L}_{d \leq 4} + \sum_{p,q} \frac{c_{pq}^{(5)}}{\Lambda} (L_p L_q) HH + \sum_{i=1}^{4} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{d=6} + \sum_{i=1}^{6} \frac{c_i^{(7)}}{\Lambda^3} \mathcal{O}_i^{d=7} + \cdots$$

$$\Delta B = \Delta L = 1$$

$$\bigcirc \Delta B = \Delta L = 1$$

$$\bigcirc \Delta B = \Delta L = 1$$

$$\bigcirc \Delta B = -\Delta L = 1$$

$$\bigcirc \overline{A} = (Q^i Q^j) (Q^l L^k) \epsilon_{ik} \epsilon_{jl}$$

$$\bigcirc \overline{A} = (Q^i Q^j) (\overline{u}^\dagger \overline{e}^\dagger) \epsilon_{ij}$$

$$\bigcirc \overline{A} = (\overline{d}^\dagger \overline{u}^\dagger) (\overline{u}^\dagger \overline{e}^\dagger) \epsilon_{ij}$$

$$\bigcirc \overline{A} = (\overline{d}^\dagger \overline{u}^\dagger) (Q^i L^j) \epsilon_{ij}$$

$$\boxed{A} = 6$$

$$\bigcirc \overline{A} = (L^\dagger \overline{d}^\dagger) (\overline{u}^\dagger \overline{d}^\dagger) H$$

$$\bigcirc \overline{A} = (L^\dagger \overline{d}^\dagger) (Q^i L^j) \epsilon_{ij}$$

$$\boxed{A} = 6$$

$$\boxed{A} = (L^\dagger \overline{d}^\dagger) (\overline{u}^\dagger \overline{d}^\dagger) H$$

$$\bigcirc \overline{A} = (L^\dagger \overline{d}^\dagger) (\overline{u}^\dagger \overline{d}^\dagger) H$$

$$\bigcirc \overline{A} = (\overline{d}^\dagger \overline{u}^\dagger) (Q^i L^j) \epsilon_{ij}$$

$$\boxed{A} = 6$$

$$\boxed{A} = (L^\dagger \overline{d}^\dagger) (\overline{u}^\dagger \overline{d}^\dagger) H$$

$$\boxed{A} = (L^\dagger \overline{d}^\dagger) (\overline{u}^\dagger \overline{d}^\dagger) H$$

$$\boxed{A} = (L^\dagger \overline{d}^\dagger) (\overline{u}^\dagger \overline{d}^\dagger) H$$

$$\boxed{A} = (\overline{A} = 1)$$

 $H \sim (\mathbf{1}, \mathbf{2}, \frac{1}{2}), \quad Q \sim (\mathbf{3}, \mathbf{2}, \frac{1}{6}), \quad \bar{u} \sim (\bar{\mathbf{3}}, \mathbf{1}, -1)$

John Gargalionis

$$(\frac{2}{3}), \quad \bar{d} \sim (\bar{\mathbf{3}}, \mathbf{1}, \frac{1}{3}), \quad L \sim (\mathbf{1}, \mathbf{2}, -\frac{1}{2}), \quad \bar{e} \sim (\mathbf{1}, \mathbf{1}, 1)$$

Decay mode	Limit $[10^{34} \text{ yr}]$	Hyper-K $[10^{34} \text{ yr}]$	ΔI	Δ
Proton chann	els			
$p \to \pi^0 e^+$	2.4	3.2	$-\frac{1}{2}$	
$p \to \pi^0 \mu^+$	1.6	7.7	$-\frac{1}{2}$	
$p \rightarrow \eta^0 e^+$	1.0	4.3	$-\frac{1}{2}$	
$p ightarrow \eta^0 \mu^+$	0.47	4.9	$-\frac{1}{2}$	
$p \to \pi^+ \nu_r$	0.039		$\frac{\overline{1}}{2}$	
$p \to K^0 e^+$	0.10		-1	
$p \to K^0 \mu^+$	0.16		-1	
$p \to K^+ \nu_r$	0.59	3.2	0	
$p \to \bar{K}^0 e^+$	0.10		0	_
$p \to \bar{K}^0 \mu^+$	0.16		0	_
Neutron chan	nels			
$n \to \pi^0 \nu_r$	0.11		$\frac{1}{2}$	
$n \to \eta^0 \nu_r$	0.016		$\frac{1}{2}$	
$n \to \pi^- e^+$	0.53	2.0	$-\frac{1}{2}$	
$n \to \pi^- \mu^+$	0.35	1.8	$-\frac{1}{2}$	
$n \to \pi^+ e^-$	0.0065		$\frac{\overline{3}}{2}$	
$n \to \pi^+ \mu^-$	0.0049		$\frac{\overline{3}}{2}$	
$n \to K^+ e^-$	0.0032	1.0	1	
$n \to K^+ \mu^-$	0.0057		1	
$n \to K^0 \nu_r$	0.013		0	
$n \to K^- e^+$	0.0017		0	_
$n \to \bar{K}^0 \nu_r$	0.013		1	_

Decays to (anti-)leptons are generated at dimension (6) 7 in the SMEFT

Just a handful of two-body decays generically dominate

Hyper-K estimates: 1805.04163

Decays predicted by operators are fixed by symmetries

Decay mode	Limit $[10^{34} \text{ yr}]$	Hyper-K $[10^{34} \text{ yr}]$	ΔI	ΔS	ΔL	
Proton chann	els					
$p \to \pi^0 e^+$	2.4	3.2	$-\frac{1}{2}$	0	-1	
$p \to \pi^0 \mu^+$	1.6	7.7	$-\frac{1}{2}$	0	-1	1
$p \to \eta^0 e^+$	1.0	4.3	$-\frac{1}{2}$	0	-1	Т
$p \to \eta^0 \mu^+$	0.47	4.9	$-\frac{1}{2}$	0	-1	
$p \to \pi^+ \nu_r$	0.039		$\frac{1}{2}$	0	± 1	2
$p \to K^0 e^+$	0.10		-1	1	-1	ζ
$p \to K^0 \mu^+$	0.16		-1	1	-1	<u> </u>
$p \to K^+ \nu_r$	0.59	3.2	0	1	± 1	4
$p \to \bar{K}^0 e^+$	0.10		0	-1	-1	5
$p \to \bar{K}^0 \mu^+$	0.16	—	0	-1	-1	2
Neutron chan	nels					
$n \to \pi^0 \nu_r$	0.11		$\frac{1}{2}$	0	± 1	
$n o \eta^0 \nu_r$	0.016		$\frac{1}{2}$	0	± 1	
$n \to \pi^- e^+$	0.53	2.0	$-\frac{1}{2}$	0	-1	
$n \to \pi^- \mu^+$	0.35	1.8	$-\frac{1}{2}$	0	-1	
$n \to \pi^+ e^-$	0.0065		$\frac{3}{2}$	0	1	6
$n \to \pi^+ \mu^-$	0.0049		$\frac{3}{2}$	0	1	0
$n \to K^+ e^-$	0.0032	1.0	1	1	1	7
$n \to K^+ \mu^-$	0.0057		1	1	1	/
$n \to K^0 \nu_r$	0.013		0	1	± 1	
$n \to K^- e^+$	0.0017		0	-1	-1	
$n \to \bar{K}^0 \nu_r$	0.013		1	-1	± 1	

Decays to (anti-)leptons are generated at dimension (6) 7 in the SMEFT

John Gargalionis

BLV – KIT

Name [42]	Operator	Flavour	ΔI	ΔS
$[\mathcal{O}_{udd}^{S,LL}]_{111r}$	$(ud)(d u_r)$	(8 , 1)	$\frac{1}{2}$	0
$[\mathcal{O}_{udd}^{S,LL}]_{121r}$	$(us)(d u_r)$	$({f 8},{f 1})$	0	1
$[\mathcal{O}_{udd}^{\widetilde{S},\widetilde{LL}}]_{112r}$	$(ud)(s\nu_r)$	$({f 8},{f 1})$	0	1
$[\mathcal{O}_{duu}^{S,LL}]_{111r}$	$(du)(ue_r)$	(8 , 1)	$-\frac{1}{2}$	0
$[\mathcal{O}^{S,LL}_{duu}]_{211r}$	$(su)(ue_r)$	$({f 8},{f 1})$	-1	1
$[\mathcal{O}_{duu}^{S,LR}]_{111r}$	$(du)(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	$(ar{3},3)$	$-\frac{1}{2}$	0
$[\mathcal{O}_{duu}^{S,LR}]_{211r}$	$(su)(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	$(ar{3},3)$	-1	1
$[\mathcal{O}_{duu}^{S,RL}]_{111r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(ue_r)$	$({f 3},ar{f 3})$	$-\frac{1}{2}$	0
$[\mathcal{O}^{S,RL}_{duu}]_{211r}$	$(\bar{s}^{\dagger}\bar{u}^{\dagger})(ue_r)$	$({f 3},ar{f 3})$	-1	1
$[\mathcal{O}_{dud}^{S,RL}]_{111r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(d\nu_r)$	$({f 3},ar{f 3})$	$\frac{1}{2}$	0
$[\mathcal{O}^{S,RL}_{dud}]_{211r}$	$(\bar{s}^{\dagger}\bar{u}^{\dagger})(d u_r)$	$({f 3},ar{f 3})$	0	1
$[\mathcal{O}_{dud}^{S,RL}]_{112r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(s\nu_r)$	$({f 3},ar{f 3})$	0	1
$[\mathcal{O}_{ddu}^{S,RL}]_{[12]1r}$	$(\bar{d}^{\dagger}\bar{s}^{\dagger})(u\nu_{r})$	$({f 3},ar{f 3})$	0	1
$[\mathcal{O}_{duu}^{S,RR}]_{111r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	$({f 1},{f 8})$	$-\frac{1}{2}$	0
$[\mathcal{O}_{duu}^{S,RR}]_{211r}$	$(\bar{s}^{\dagger}\bar{u}^{\dagger})(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	(1 , 8)	-1	1

Name [42]	Operator	Flavour	ΔI	ΔS	
$[\mathcal{O}_{ddd}^{S,LL}]_{[12]r1}$	$(ds)(\bar{e}_r d)$	(8 , 1)	1	1	
$[\mathcal{O}_{udd}^{S,LR}]_{11r1}$	$(ud)(u_r^\dagger ar d^\dagger)$	$(ar{3}, 3)$	$\frac{1}{2}$	0	
$[\mathcal{O}^{S,LR}_{udd}]_{12r1}$	$(us)(u_r^\dagger ar d^\dagger)$	$(ar{3},3)$	0	1	
$[\mathcal{O}_{udd}^{\widetilde{S},\widetilde{L}R}]_{11r2}$	$(ud)(u_r^\dagger ar{s}^\dagger)$	$(ar{3},3)$	0	1	
$[\mathcal{O}_{ddu}^{S,LR}]_{[12]r1}$	$(ds)(\nu_r^{\dagger}\bar{u}^{\dagger})$	$(ar{3},3)$	0	1	
$[\mathcal{O}_{ddd}^{S,LR}]_{[12]r1}$	$(ds)(e_r^\dagger \bar{d}^\dagger)$	$(ar{3},3)$	1	1	
$[\mathcal{O}_{ddd}^{S,RL}]_{[12]r1}$	$(\bar{d}^{\dagger}\bar{s}^{\dagger})(\bar{e}_{r}d)$	$({f 3},ar{f 3})$	1	1	
$[\mathcal{O}_{udd}^{S,RR}]_{11r1}$	$(ar{u}^\daggerar{d}^\dagger)(u_r^\daggerar{d}^\dagger)$	(1 , 8)	$\frac{1}{2}$	0	
$[\mathcal{O}^{S,RR}_{udd}]_{12r1}$	$(ar{u}^\daggerar{s}^\dagger)(u_r^\daggerar{d}^\dagger)$	(1 , 8)	0	1	
$[\mathcal{O}_{udd}^{\widetilde{S},\widetilde{R}R}]_{11r2}$	$(ar{u}^\daggerar{d}^\dagger)(u_r^\daggerar{s}^\dagger)$	(1 , 8)	0	1	
$[\mathcal{O}_{ddd}^{S,RR}]_{[12]r1}$	$(\bar{d}^{\dagger}\bar{s}^{\dagger})(e_{r}^{\dagger}\bar{d}^{\dagger})$	(1 , 8)	1	1	

 $\Delta B = -\Delta L = -1$

$\Delta B = \Delta L = -1$

Generated at dimension-6 in the SMEFT

Generated at dimension-7 in the SMEFT

Some two-body decays proceed through dimension-7 LEFT operators

Decay mode	Limit $[10^{34} \text{ yr}]$	Hyper-K $[10^{34} \text{ yr}]$	ΔI	ΔS	ΔL		Name	Ref. [56]	Operator	Flavour	Indices	ΔI	ΔS
Proton chann	els										11r1	$\frac{1}{2}$	0
$p \to \pi^0 e^+$	2.4	3.2	$-\frac{1}{2}$	0	-1		$[\mathcal{O}_{dud}^{V,RL}]_{pqrs}$	$\mathcal{O}^*_{d u u dD1}$	$(\bar{d}_{p}^{\dagger}i\overleftrightarrow{D}_{\mu}\bar{u}_{q}^{\dagger})(u_{r}^{\dagger}\bar{\sigma}^{\mu}d_{s})$	(3 , 6)	21r1	$\overset{2}{0}$	1
$p \to \pi^0 \mu^+$	1.6	7.7	$-\frac{1}{2}$	0	-1						11r2	0	1
$p \rightarrow \eta^0 e^+$	1.0	4.3	$-\frac{1}{2}$	0	-1						11r1	$\frac{1}{2}$	0
$p \rightarrow \eta^0 \mu^+$	0.47	4.9	$-\frac{1}{2}$	0	-1		$[\mathcal{O}_{ddu}^{v,LL}]_{\{pq\}rs}$	$\mathcal{O}^*_{u u dD1}$	$(d_p i D_\mu d_q)(\nu_r \bar{\sigma}^\mu u_s)$	$({f 10},{f 1})$	12r1	$\frac{2}{0}$	1
$p \to \pi^+ \nu_r$	0.039		$\frac{1}{2}$	0	± 1						111	1	0
$p \rightarrow K^0 e^+$	0.10		-1	1	-1		$[\mathcal{O}_{ddu}^{V,RL}]_{\{pq\}rs}$	$\mathcal{O}^*_{u u dD2}$	$(ec{d}_{p}^{\dagger}i\overleftrightarrow{D}_{\mu}ec{d}_{q}^{\dagger})(u_{r}^{\dagger}ar{\sigma}^{\mu}u_{s})$	(3 , 6)	11T1 19r1	$\overline{2}$	0
$p \to K^0 \mu^+$	0.16		-1	1	-1						1271	0	1
$p \to K^+ \nu_r$	0.59	3.2	0	1	±1	-	$[\mathcal{O}_{ddd}^{V,LL}]^{\square}_{nars}$	\mathcal{O}^*_{dodD1}	$(d_n i \overrightarrow{D}_\mu d_a) (e_r^{\dagger} \overline{\sigma}^{\mu} d_s)$	(10, 1)	111r	$\frac{3}{2}$	0
$p \to \bar{K}^0 e^+$	0.10		0	-1	-1			aeaD1			121r	1	1
$p \to \bar{K}^0 \mu^+$	0.16		0	-1	-1						11r1	$\frac{3}{2}$	0
Neutron chan	nels						$[\mathcal{O}_{ddd}^{V,RL}]_{\{pq\}rs}$	\mathcal{O}^*_{dedD2}	$(ar{d}_p^\dagger i D_\mu ar{d}_q^\dagger) (e_r^\dagger ar{\sigma}^\mu d_s)$	(3 , 6)	12r1	1	1
$n \to \pi^0 \nu_r$	0.11		$\frac{1}{2}$	0	± 1						11r2	1	1
$n o \eta^0 \nu_r$	0.016		$\frac{1}{2}$	0	± 1						11r1	$\frac{3}{2}$	0
$n \to \pi^- e^+$	0.53	2.0	$-\frac{1}{2}$	0	-1		$[\mathcal{O}_{ddd}^{V,LR}]_{\{pq\}rs}$	\mathcal{O}^*_{dedD3}	$(d_p i \overrightarrow{D}_\mu d_q) (\bar{e}_r \sigma^\mu \bar{d}_s^\dagger)$	$({f 6},{f 3})$	12r1	1	1
$n \to \pi^- \mu^+$	0.35	1.8	$-\frac{1}{2}$	0	-1						11r2	1	1
$n \to \pi^+ e^-$	0.0065		$\frac{\overline{3}}{2}$	0	1	6					111r	$\frac{3}{2}$	0
$n \to \pi^+ \mu^-$	0.0049		$\frac{3}{2}$	0	1	0	$[\mathcal{O}_{ddd}^{v,\kappa\kappa}]_{pqrs}^{\square}$	\mathcal{O}^*_{dedD4}	$(d_p^{\scriptscriptstyle \dagger} i D_\mu d_q^{\scriptscriptstyle \dagger}) (\bar{e}_r \sigma^\mu d_s^{\scriptscriptstyle \dagger})$	$({f 1},{f 10})$	121r	$\frac{2}{1}$	1
$n \to K^+ e^-$	0.0032	1.0	1	1	1								
$n \to K^+ \mu^-$	0.0057	—	1	1	1		$\Delta B = -$	$\Delta L =$	-1				
$n \to K^0 \nu_r$	0.013		0	1	± 1								
$n \to K^- e^+$	0.0017		0	-1	-1	-							
$n \to \bar{K}^0 \nu_r$	0.013		1	-1	± 1		Dimensio	on-7 LE	FT operators of	genera	ted at		

Decays to (anti-)leptons are generated at dimension (6) 7 in the SMEFT

Oct 08, 2024

John Gargalionis

BLV – KIT

dimension-7 in the SMEFT

[56]: Liao, Ma, Wang 2005.08013

John Gargalionis

BLV – KIT

Oct 08, 2024

7

Some LEFT operators are only generated above dimension-7

John Gargalionis

BLV – KIT

Oct 08, 2024

Liao, Ma, 1607.07309 Jenkins, Manohar, Stoffer 1709.04486

 $(\bar{d}_{p}^{\dagger}\bar{d}_{q}^{\dagger})(Q_{r}^{i}L_{s}^{j})H^{k}H^{l}\epsilon_{ik}\epsilon_{jl}$

 $(\bar{e}_p^{\dagger}Q_{qi}^{\dagger})(Q_{rj}^{\dagger}Q_{sk}^{\dagger})H^iH^jH^k$ $(L_p^i \bar{u}_q)(Q_{ri}^{\dagger} Q_{sk}^{\dagger})H^{i'}H^j H^k \epsilon_{ii'}$

 $(Q_{p}^{i}iD^{\mu}Q_{q}^{j})(\bar{e}_{r}\sigma^{\mu}\bar{d}_{s}^{\dagger})\tilde{H}^{k}\tilde{H}^{l}\epsilon_{ik}\epsilon_{jl}$ $(Q_{p}^{i}iD^{\mu}Q_{q}^{j})(L_{r}^{\dagger}\bar{\sigma}^{\mu}Q_{s})\tilde{H}^{k}\tilde{H}^{l}\epsilon_{ik}\epsilon_{jl}$ $(\bar{u}_p i D^\mu \bar{d}_q) (Q^{\dagger}_{ri} \bar{\sigma}^\mu L^j_s) H^i H^k \epsilon_{jk}$

JG, Herrero-García, Schmidt 2401.04768

Loop-induced nucleon decays often dominate because

$$\frac{v}{\Lambda} \ll \frac{1}{16\pi^2}$$

Difficult to imagine leading effects in these LEFT operators

We calculate de

$$\mathscr{L} = \begin{cases} g_{MB}^{N} \bar{B} \gamma^{\mu} \gamma_{5} N \partial_{\mu} M \\ \Delta B = 0 \end{cases} + m_{B\alpha} \bar{\ell}_{\alpha} B + i y_{M\alpha}^{N} \bar{\ell}_{\alpha} N M \end{cases}$$

First-time calculation of dim-7 nucleon decay rates using the chiral-Lagrangian method

John Gargalionis

BLV – KIT

!C	ay rate	es usin	g BχPT Aoki, et al. 1705.01 Yoo et al. 2111.01
	α, β a	are domina	nt source of $\langle 0 e^{abc} (\bar{u}_a^{\dagger} \bar{d}_b^{\dagger}) u_c p^{(s)} \rangle = \alpha P_L u_c$
	uncer	rtainty in o	ur calculations $\langle 0 \epsilon^{abc} (u_a d_b) u_c p^{(s)} \rangle = \beta P_L u$
	A Matchi	ng to B χ P	f of BNV dimension-6 LEFT operators
	Name	LEFT	$ m Flavour/B\chi PT$
	$[\mathcal{O}_{udd}^{S,LL}]_{rstu}$	$(u_r d_s)(d_t u_u)$	(8 , 1)
	$[\mathcal{O}_{udd}^{S,LL}]_{111r}$	$(ud)(d u_r)$	$-\beta \overline{\nu_{Lr}^c} \operatorname{tr}(\xi B \xi^{\dagger} P_{32}) \supset -\beta \overline{\nu_{Lr}^c} n - \frac{i\beta}{f_{\pi}} \overline{\nu_{Lr}^c} \left(\sqrt{\frac{3}{2}} n\eta - \frac{1}{\sqrt{2}} n\pi^0 + p\pi^- \right)$
	$[\mathcal{O}_{udd}^{S,LL}]_{121r}$	$(us)(d u_r)$	$-\beta\nu_{Lr}^c \mathrm{tr}(\xi B\xi^{\dagger} P_{22}) \supset -\beta\nu_{Lr}^c \left(-\frac{\Lambda^{\circ}}{\sqrt{6}} + \frac{\Sigma^{\circ}}{\sqrt{2}}\right) - \frac{\imath\beta}{f_{\pi}}\nu_{Lr}^c nK^0$
	$[\mathcal{O}_{udd}^{S,LL}]_{112r}$	$(ud)(s u_r)$	$-\beta \overline{\nu_{Lr}^c} \operatorname{tr}(\xi B \xi^{\dagger} P_{33}) \supset \beta \sqrt{\frac{2}{3}} \overline{\nu_{Lr}^c} \Lambda^0 - \frac{i\beta}{f_{\pi}} \overline{\nu_{Lr}^c} \left(n \overline{K}^0 + p K^- \right)$
	$[\mathcal{O}^{S,LL}_{duu}]_{rstu}$	$(d_r u_s)(u_t e_u)$	(8 , 1)
	$[\mathcal{O}_{duu}^{S,LL}]_{111r}$	$(du)(ue_r)$	$-\beta \overline{e_{Lr}^c} \text{tr}(\xi B \xi^{\dagger} \tilde{P}_{31}) \supset \beta \overline{e_{Lr}^c} p + \frac{i\beta}{f_{\pi}} \overline{e_{Lr}^c} \left(\sqrt{\frac{3}{2}} p\eta + \frac{1}{\sqrt{2}} p\pi^0 + n\pi^+ \right)$
	$[\mathcal{O}^{S,LL}_{duu}]_{211r}$	$(su)(ue_r)$	$-eta\overline{e_{Lr}^c}\mathrm{tr}(\xi B\xi^{\dagger}P_{21})\supset -eta\overline{e_{Lr}^c}\Sigma^+ + rac{ieta}{f_{\pi}}\overline{e_{Lr}^c}par{K}^0$
	$[\mathcal{O}^{S,LR}_{uud}]_{[rs]tu}$	$(u_r u_s) (ar{d}_t^\dagger ar{e}_u^\dagger)$	
	$[\mathcal{O}^{S,LR}_{duu}]_{rstu}$	$(d_r u_s)(ar{u}_t^\dagger ar{e}_u^\dagger)$	$(ar{3}, 3)$
	$[\mathcal{O}^{S,LR}_{duu}]_{111r}$	$(du)(ar{u}^\daggerar{e}_r^\dagger)$	$\alpha \overline{e_{Rr}^c} \operatorname{tr}(\xi^{\dagger} B \xi^{\dagger} \tilde{P}_{31}) \supset -\alpha \overline{e_{Rr}^c} p + \frac{i\alpha}{f_{\pi}} \overline{e_{Rr}^c} \left(-\frac{1}{\sqrt{6}} p\eta + \frac{1}{\sqrt{2}} p\pi^0 + n\pi^+ \right)$
	$[\mathcal{O}^{S,LR}_{duu}]_{211r}$	$(su)(ar{u}^\daggerar{e}_r^\dagger)$	$\longrightarrow \alpha \overline{e_{Rr}^c} \operatorname{tr}(\xi^{\dagger} B \xi^{\dagger} P_{21}) \supset \alpha \overline{e_{Rr}^c} \Sigma^+ - \frac{i\alpha}{f_{\pi}} \overline{e_{Rr}^c} p \bar{K}^0$
	$[\mathcal{O}^{S,RL}_{uud}]_{[rs]tu}$	$(ar{u}_r^\daggerar{u}_s^\dagger)(d_te_u)$	
	$[\mathcal{O}^{S,RL}_{duu}]_{rstu}$	$(ar{d}_r^\daggerar{u}_s^\dagger)(u_te_u)$	$(3, ar{3})$

We package the decay rates into numerical matrices that are available online

John Gargalionis

BLV – KIT

Oct 08, 2024

https://zenodo.org/records/12664770

Running can lead to large enhancements in the limits derived

John Gargalionis

BLV – KIT

- Assume single-operator dominance
- Running dominated by gauge interactions, can be large
 - Expressions look like $16\pi^{2}\mu\frac{d\mu}{dc_{i}} = -4g_{3}^{2}c_{i} + \cdots$
 - 1.6 2.3 factor enhancement
- Strongest lower limit $\Lambda/\sqrt{c} > 2 \cdot 10^{15} \text{ GeV}$

The effect is milder at dimension 7 because of an accidental cancellation

•	Assume single-operator dominance	-	$1.2 \cdot 10^{1}$
•	Top-quark Yukawa relevant for Higgs wave function renormalisation) –	10^{1}
•	Expressions look like $16\pi^2 \mu \frac{d\mu}{dc_i} = (-4g_3^2 + y_t^2)c_i + \cdots$	$\Lambda/\sqrt[3]{c}$ [GeV]	$8 \cdot 10^{1}$ $6 \cdot 10^{1}$ $4 \cdot 10^{1}$
•	1.2 – 1.3 factor enhancement		$2 \cdot 10^1$
•	Strongest lower limit $\Lambda/\sqrt{c} > 2 \cdot 10^{10} \text{ GeV}$	Witho RGEs	ut

Pairs of non-zero Wilson coefficients show how different decay modes provide complementary constraints

John Gargalionis

BLV – KIT

Several positive signals may allow us to exclude or determine if a single operator dominates Recall 15% uncertainty in α , β !

John Gargalionis

BLV – KIT

Example UV model shows flavour is important

Introduce scalar LQ and vector-like fermion

$$\omega_2 \sim (\mathbf{3}, \mathbf{1}, \frac{2}{3}) \quad Q_1 + \bar{Q}_1^{\dagger} \sim (\mathbf{3}, \mathbf{2}, \frac{1}{6})$$

Model generates two d = 7 operators at tree level

$$\frac{c_{\bar{l}dddH}^{pqrs}}{\Lambda^3} = \frac{y_{dd}^{[rs]} y_{dH}^{q*} y_{LQ_1}^{p*}}{M_{\omega_2}^2 M_Q} \quad \frac{c_{\bar{l}dud\tilde{H}}^{pqrs}}{\Lambda^3} = 2 \frac{y_{dd}^{[qs]} y_{uH}^{r*} y_{LQ_1}^{p*}}{M_{\omega_2}^2 M_Q}$$

$$\mathcal{O}_{\bar{l}dddH}^{1211}: n \to K^+ e^-$$

$$\mathcal{O}_{\bar{l}dddH}^{1211,1112}: p \to K^+ \nu, n \to K^0 \nu$$

$$\mathcal{O}_{\bar{l}dud\tilde{H}}^{1211,1112}: p \to K^+ \nu, n \to K^0 \nu$$

 $\mathcal{O}_{ar{l}dud ilde{H},1111}$ = $\mathcal{O}_{ar{l}dqq ilde{H},1111}$ = $\mathcal{O}_{ar{l}dud ilde{H},1121}$ = $\mathcal{O}_{ar{l}dud ilde{H},1121}$ = $\mathcal{O}_{ar{l}dqq ilde{H},1121}$ = $\mathcal{O}_{ar{l}dqq ilde{H},1121}$ = $\mathcal{O}_{ar{l}dqq ilde{H},1121}$ = $\mathcal{O}_{ar{l}ddq ilde{H},1121}$ = $\mathcal{O}_{ar{l}ddq ilde{H},1121}$ = $\mathcal{O}_{ar{l}ddd ilde{H},1121}$ = \mathcal{O}

John Gargalionis

BLV – KIT

 $p \to K^+ \nu$

 $n \to K^+ e^-$

[
$\mathcal{O}_{ar{l}dud ilde{H},1111}$	_								
$\mathcal{O}_{ar{l}dqq ilde{H},1111}$	-	0.01	0.21	0.05	0.22		0.06		
$\mathcal{O}_{ar{l}dud ilde{H},1211}$	-	0.21	3.09	0.76	3.25		0.80		
$\mathcal{O}_{ar{l}dud ilde{H},1112}$	-	0.05	0.76	0.19	0.80		0.20		
$\mathcal{O}_{ar{l}dqq ilde{H},1211}$	-	0.22	3.25	0.80	3.42		0.84		
$\mathcal{O}_{ar{l}dqq ilde{H},1121}$	_								
$\mathcal{O}_{ar{l}dqq ilde{H},1112}$	-	0.06	0.80	0.20	0.84		0.21		
$\mathcal{O}_{ar{l}dddH,1121}$	-								
$\mathcal{O}_{ar{e}qdd ilde{H},1121}$	-								
	$\mathcal{O}_{ar{l}dud ilde{H},1111}$	$\mathcal{O}_{ar{l}dqq ilde{H},1111}$	$\mathcal{O}_{ar{l}dud ilde{H},1211}$ -	$\mathcal{O}_{ar{l}dud ilde{H},1112}$	$\mathcal{O}_{ar{l}dqq ilde{H},1211}$ -	$\mathcal{O}_{ar{l}dqq ilde{H},1121}$ -	$\mathcal{O}_{ar{l}dqq ilde{H},1112}$ -	$\mathcal{O}_{ar{l}dddH,1121}$ -	$\mathcal{O}_{ ilde{e}add ilde{H},1121}^{-1}$

Example UV model shows flavour is important

Introduce scalar LQ and vector-like fermion

$$\omega_2 \sim (\mathbf{3}, \mathbf{1}, \frac{2}{3}) \quad Q_1 + \bar{Q}_1^{\dagger} \sim (\mathbf{3}, \mathbf{2}, \frac{1}{6})$$

Model generates two d = 7 operators at tree level

$$\frac{c_{\bar{l}dddH}^{pqrs}}{\Lambda^3} = \frac{y_{dd}^{[rs]} y_{dH}^{q*} y_{LQ_1}^{p*}}{M_{\omega_2}^2 M_Q} \quad \frac{c_{\bar{l}dud\tilde{H}}^{pqrs}}{\Lambda^3} = 2 \frac{y_{dd}^{[qs]} y_{uH}^{r*} y_{LQ_1}^{p*}}{M_{\omega_2}^2 M_Q}$$

$$\mathcal{O}_{\bar{l}dddH}^{1211}: n \to K^+ e^-$$

$$\mathcal{O}_{\bar{l}dddH}^{1211,1112}: p \to K^+ \nu, n \to K^0 \nu$$

$$\mathcal{O}_{\bar{l}dud\tilde{H}}^{1211,1112}: p \to K^+ \nu, n \to K^0 \nu$$

 $\mathcal{O}_{ar{l}dud ilde{H},1111}$ $\mathcal{O}_{ar{l}dqq ilde{H},1111}$ $\mathcal{O}_{\bar{l}dud\tilde{H},1211}$ $\mathcal{O}_{\bar{l}dud\tilde{H},1112}$ $\mathcal{O}_{ar{l}dqq ilde{H},1211}$ $\mathcal{O}_{ar{l}dqq ilde{H},1121}$ $\mathcal{O}_{ar{l}dqq ilde{H},1112}$ $\mathcal{O}_{ar{l}dddH,1121}$ $\mathcal{O}_{\bar{e}qdd\tilde{H},1121}$

John Gargalionis

BLV – KIT

- Depending on symmetries, dominant contributions from either d = 6 (B L = 0) or d = 7 (B L = 2)
- **RG corrections are important**, limits enhanced by up to factor of 2.3
- Complementary constraints **exclude flat directions**
- Several positive signals may allow us to **determine the origin of baryon-number violation**
- **Caution:** Uncertainty on hadronic inputs is large

Conclusions

Vielen Dank!

John Gargalionis

BLV – KIT

Backup

John Gargalionis

BLV – KIT

Name	Operator
Dimension	6
\mathcal{O}_{qqql}	$(Q_p^i Q_q^j)(Q_r^l L_s^k)\epsilon_{ik}\epsilon_{jl}$
\mathcal{O}_{qque}	$(Q_p^i Q_q^j)(\bar{u}_r^\dagger \bar{e}_s^\dagger)\epsilon_{ij}$
\mathcal{O}_{duue}	$(\bar{d}_p^\dagger \bar{u}_q^\dagger) (\bar{u}_r^\dagger \bar{e}_s^\dagger)$
\mathcal{O}_{duql}	$(\bar{d}_p^{\dagger}\bar{u}_q^{\dagger})(Q_r^i L_s^j)\epsilon_{ij}$
Dimension	7
$\mathcal{O}_{ar{l}dddH}$	$(L_p^{\dagger} \vec{d}_q^{\dagger}) (\vec{d}_r^{\dagger} \vec{d}_s^{\dagger}) H$
$\mathcal{O}_{ar{l}dqq ilde{H}}$	$(L_p^{\dagger} \bar{d}_q^{\dagger}) (Q_r Q_s^i) \tilde{H}^j \epsilon_{ij}$
$\mathcal{O}_{ar{e}qdd ilde{H}}$	$(\bar{e}_p Q_q^i)(\bar{d}_r^{\dagger} \bar{d}_s^{\dagger}) \tilde{H}^j \epsilon_{ij}$
$\mathcal{O}_{ar{l}dud ilde{H}}$	$(L_p^{\dagger} \bar{d}_q^{\dagger}) (\bar{u}_r^{\dagger} \bar{d}_s^{\dagger}) \tilde{H}$
$\mathcal{O}_{ar{l}qdDd}$	$(L_p^{\dagger}\bar{\sigma}^{\mu}Q_q)(\vec{d}_r^{\dagger}i\overleftrightarrow{D}_{\mu}\vec{d}_s^{\dagger})$
${\cal O}_{ar e dddD}$	$(\bar{e}_p \sigma^\mu \bar{d}_q^\dagger) (\bar{d}_r^\dagger i \overleftrightarrow{D}_\mu \bar{d}_s^\dagger)$

John Gargalionis

BLV – KIT

Oct 08, 2024

Permutation symmetry

We match onto the $B_{X}PT$ using operator symmetries

 $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ $M = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}}\eta \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda^{0}}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda^{0}}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda^{0} \end{pmatrix} \qquad \begin{bmatrix} \mathcal{O}_{u}^{S} \\ \mathcal{O}_{u}^{S} \\ \mathcal{O}_{d}^{S} \\ \mathcal{O}_{d}^{S} \end{bmatrix}$ $\xi \equiv e^{iM/f_{\pi}} \to L\xi U^{\dagger} = U\xi R^{\dagger}$ $B \rightarrow UBU^{\dagger}$ $[\xi B\xi^{\dagger}\nu_{r}]_{l}^{k} \sim (q_{i}q_{j})(q_{l}\nu_{r})\epsilon^{ijk} - \frac{1}{3}(q_{i}q_{j})(q_{m}\nu_{r})\epsilon^{ijm}\delta_{l}^{k}$ $\xi B \xi \sim (\mathbf{3}, \mathbf{3})$ $\supset [\mathcal{O}_{udd}^{S,LL}]_{111r}, \ [\mathcal{O}_{udd}^{S,LL}]_{121r}, \ [\mathcal{O}_{udd}^{S,LL}]_{112r}$ $\xi^{\dagger}B\xi^{\dagger} \sim (\bar{\mathbf{3}},\mathbf{3})$ $\xi B \xi^{\dagger} \sim (\mathbf{8}, \mathbf{1})$

Projection matrix P_{ii} necessary to pick out component corresponding to single operator

 $\xi^{\dagger}B\xi \sim (\mathbf{1},\mathbf{8})$

BLV – KIT

Name $[42]$	Operator	Flavour	ΔI	Δ
$ [\mathcal{O}_{udd}^{S,LL}]_{111r} \\ [\mathcal{O}_{udd}^{S,LL}]_{121r} \\ [\mathcal{O}_{udd}^{S,LL}]_{112r} $	$(ud)(d u_r)$ $(us)(d u_r)$ $(ud)(s u_r)$	$({f 8},{f 1}) \ ({f 8},{f 1}) \ ({f 8},{f 1}) \ ({f 8},{f 1})$		
$ [\mathcal{O}^{S,LL}_{duu}]_{111r} \\ [\mathcal{O}^{S,LL}_{duu}]_{211r} $	$(du)(ue_r)$ $(su)(ue_r)$	$({f 8},{f 1})\ ({f 8},{f 1})$	$-\frac{1}{2}$ -1	
$[\mathcal{O}^{S,LR}_{duu}]_{111r} \ [\mathcal{O}^{S,LR}_{duu}]_{211r}$	$(du)(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger}) \\ (su)(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$-\frac{1}{2} -1$	
$ [\mathcal{O}_{duu}^{S,RL}]_{111r} \\ [\mathcal{O}_{duu}^{S,RL}]_{211r} $	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(ue_r)$ $(\bar{s}^{\dagger}\bar{u}^{\dagger})(ue_r)$	$({f 3},ar{f 3})\ ({f 3},ar{f 3})$	$-\frac{1}{2}$ -1	
$ \begin{split} [\mathcal{O}^{S,RL}_{dud}]_{111r} \\ [\mathcal{O}^{S,RL}_{dud}]_{211r} \\ [\mathcal{O}^{S,RL}_{dud}]_{112r} \end{split} $	$\begin{array}{l} (\bar{d}^{\dagger}\bar{u}^{\dagger})(d\nu_{r})\\ (\bar{s}^{\dagger}\bar{u}^{\dagger})(d\nu_{r})\\ (\bar{d}^{\dagger}\bar{u}^{\dagger})(s\nu_{r}) \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$		
$[\mathcal{O}_{ddu}^{S,RL}]_{[12]1r}$	$(\bar{d}^{\dagger}\bar{s}^{\dagger})(u\nu_{r})$	$({f 3},ar{f 3})$	0	
$ [\mathcal{O}^{S,RR}_{duu}]_{111r} \\ [\mathcal{O}^{S,RR}_{duu}]_{211r} $	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger}) (\bar{s}^{\dagger}\bar{u}^{\dagger})(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	$({f 1},{f 8})\ ({f 1},{f 8})$	$-\frac{1}{2} -1$	

$$\begin{split} \dot{C}_{duue,prst} &= \left(-4g_3^2 - 2g_1^2\right) C_{duue,prst} - \frac{20}{3}g_1^2 C_{duue,psrt} \\ \dot{C}_{duq\ell,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{11}{6}g_1^2\right) C_{duq\ell,prst} \\ \dot{C}_{qque,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{23}{6}g_1^2\right) C_{qque,prst} \\ g_{\ell,prst} &= \left(-4g_3^2 - 3g_2^2 - \frac{1}{3}g_1^2\right) C_{qqq\ell,prst} - 4g_2^2 \left(C_{qqq\ell,rpst} + C_{qqq\ell,srpt} + C_{qqq\ell,pst}\right) \\ ud\tilde{H}_{,prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{17}{12}g_1^2 + y_t^2\right) C_{\bar{l}dud\tilde{H},prst} - \frac{10}{3}g_1^2 C_{\bar{l}dud\tilde{H},prst} \\ ud\tilde{H}_{,prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{13}{12}g_1^2 + y_t^2\right) C_{\bar{l}dud\tilde{H},prst} , \\ ud\tilde{H}_{,prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{13}{12}g_1^2 + y_t^2\right) C_{\bar{l}dud\tilde{H},prst} , \end{split}$$

$$\begin{split} \dot{C}_{duue,prst} &= \left(-4g_3^2 - 2g_1^2\right) C_{duue,prst} - \frac{20}{3}g_1^2 C_{duue,psrt} \\ \dot{C}_{duq\ell,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{11}{6}g_1^2\right) C_{duq\ell,prst} \\ \dot{C}_{qque,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{23}{6}g_1^2\right) C_{qque,prst} \\ \dot{C}_{qqq\ell,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{17}{2}g_1^2\right) C_{\bar{q}qq\ell,prst} - 4g_2^2 \left(C_{qqq\ell,rpst} + C_{qqq\ell,srpt} + C_{qqq\ell,psrt}\right) \\ \dot{C}_{\bar{l}dud\bar{H},prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{17}{12}g_1^2 + y_t^2\right) C_{\bar{l}dud\bar{H},prst} - \frac{10}{3}g_1^2 C_{\bar{l}dud\bar{H},ptsr} , \\ \dot{C}_{\bar{l}dddH,prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{13}{12}g_1^2 + y_t^2\right) C_{\bar{l}dud\bar{H},prst} , \\ \dot{C}_{\bar{e}qdd\bar{H},prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{13}{12}g_1^2 + y_t^2\right) C_{\bar{e}qdd\bar{H},prst} , \\ \dot{C}_{\bar{e}qdd\bar{H},prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{19}{12}g_1^2 + y_t^2\right) C_{\bar{l}dqq\bar{H},prst} - 3g_2^2 C_{\bar{l}dqq\bar{H},prts} . \end{split}$$

John Gargalionis

BLV – KIT

Oct 08, 2024

RGEs

Limits compatible with gauge-coupling unification at the α_2 , α_3 crossing for $c > 10^{-2}$

John Gargalionis

BLV – KIT

