Review of Neutrinoless Double-Beta Decay Experiments

Julieta Gruszko

UNC Chapel Hill and TUNL

International Workshop on Baryon and Lepton Number Violation (BLV 2024) October 11, 2024

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

- A quick review of 0vββ
- Searching for Ονββ
- 0vββ experiments

A Quick Review of $0\nu\beta\beta$

Shamelessly stealing from Richard Ruiz...

Shamelessly stealing from Richard Ruiz...

* speaking as an experimentalist

Pros and cons of different benchmarks*

Simplified models

Ease of comparison between analyses and experiments

Tractable parameter space to understand extent of coverage

Can lead to over-simplified view of what is "excluded" or uncovered

Complete/ complex models

Theoretically robust

Illuminate wide range of final states that are needed for thorough coverage of cases

Hard to form complete picture; hard to compare across contexts

Slide by Katherine Pachal

Standard Model: Two Neutrino Double-Beta Decay

- For certain even-even nuclei, single beta decay is disallowed b/c of energy or momentum
- Instead, they double-beta decay dominates
- Second-order weak process
 - $T_{1/2} \simeq 10^{19} 10^{21}$ years
- Electron capture variant is longestlifetime process ever observed

Neutrinoless Double-Beta Decay

- If neutrinos have a non-zero Majorana mass term, 0vββ could occur
- Lepton number conservation is violated by 2 units
- In this case, I've drawn the exchange of a light neutrino, but you can think of that "x" as a contracted diagram of any sort (with new physics in it)

Majorana Neutrinos and 0vββ

Model-independent implications of $0\nu\beta\beta$:

- Lepton number violation
- Neutrino-antineutrino oscillation, implying a non-zero Majorana mass term

The Decay Signature

Double-Beta Decay Isotopes

- 35 naturally-occurring isotopes are capable of double-beta decay; we've observed it in 14 of these
- These 14 "golden nuclei" are particularly well-suited to experiments:
 - High Q-values
 - High abundance or ability to enrich (with some exceptions)
 - Other abundant isotopes of the element not highly radioactive

Double-beta candidate	Q-value (MeV)	Phase space $G_{01}(y^{-1})$	Isotopic abundance (%)	Enrichable by centrifugation
⁴⁸ Ca	4.27226 (404)	6.05×10^{-14}	0.187	No
⁷⁶ Ge	2.03904 (16)	5.77×10^{-15}	7.8	Yes
⁸² Se	2.99512 (201)	2.48×10^{-14}	9.2	Yes
⁹⁶ Zr	3.35037 (289)	5.02×10^{-14}	2.8	No
¹⁰⁰ Mo	3.03440 (17)	3.89×10^{-14}	9.6	Yes
¹¹⁶ Cd	2.81350 (13)	4.08×10^{-14}	7.5	Yes
¹³⁰ Te	2.52697 (23)	3.47×10^{-14}	33.8	Yes
¹³⁶ Xe	2.45783 (37)	3.56×10^{-14}	8.9	Yes
¹⁵⁰ Nd	3.37138 (20)	1.54×10^{-13}	5.6	No

Searching for $0\nu\beta\beta$

Neutrino Physics and 0vββ

Light Majorana neutrino exchange: assumes new physics is at high scale, $0\nu\beta\beta$ mediated by dim. 5 operator

 $\langle m_{\beta\beta} \rangle = \cos\theta_{12}^2 \cos\theta_{13}^2 e^{2i\alpha} m_1 + \cos\theta_{12}^2 \sin\theta_{12}^2 e^{2i\beta} m_2 + \sin\theta_{13}^2 m_3$

Even under simple assumptions, the $0\nu\beta\beta$ rate depends on:

- v mixing angles
- v masses
- mass hierarchy
- 2 totally unknown phases

Neutrino Physics and 0vββ

Adding a light sterile neutrino can change the parameter space dramatically

Figures by B. Jones

Light Majorana Neutrino "Theory Islands"

$$\langle m_{\beta\beta}
angle = |\sum_{i=1}^{3} U_{ei}^2 m_i|$$

- With unknown neutrino mass, mass hierarchy, and phases, we get these theory islands for light Majorana neutrino exchange
- Used to compare and set goals for future experiments

Nuclear Physics and $0\nu\beta\beta$

Experiments don't measure $m_{\beta\beta}$ directly, they measure half-life:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M_{0\nu}|^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$$

- Need to use a particular model, the phase space factor and a nuclear matrix element to turn half-life into $m_{\beta\beta}$
- Results are generally reported for the full set of NMEs; upper limit in $m_{\beta\beta}$ has a range

Nuclear Matrix Elements

- NME calculations differ by a factor of ~3-5, and full model uncertainties cannot be quantified
- Ονββ mediated by higher-dimensional operators would have different dominant NMEs
- In the case of $0\nu\beta\beta$ Long-range light neutrino exchange Short-range light neutrino exchange discovery, IBM comparison $\mathbb{T} \times \mathbb{T}$ QRPA NSM ΞII NSM IMSRG 6 between isotopes 5 CC $m_{\pi}^{2})$ M^{0v} long 5 could provide M^{0v} /(gv^{NN} r +≖ ≚ insight into 3 2 mechanism т ¹³⁶Xe ⁴⁸Ca ⁷⁶Ge ⁸²Se ¹⁰⁰Mo ¹⁵⁰Nd ¹³⁰Te ¹¹⁶Cd 0 10.1103/RevModPhys.95.025002 ⁸²Se ¹⁰⁰Mo ¹¹⁶Cd ¹³⁰Te ⁷⁶Ge ¹³⁶Xe ¹⁵⁰Nd

Heavy neutrino exchange

¹¹⁶Cd

¹³⁰Te

¹⁰⁰Mo

⁸²Se

⁷⁶Ge

¹³⁶Xe

¹⁵⁰Nd

10

6

2

M ^{0v} heavy $\pm \mathbf{T}$

⁴⁸Ca

NSM

Ab Initio Calculations

- The bad news: ab-initio matrix elements seem to be small, making 0vββ searches more challenging
- The good news: more reliable uncertainties
- As ab-initio calculations start to become a reality, we need to rethink how we treat uncertainties when quoting results

Mov

• How long should old calculations stick around?

From 10.1103/PhysRevLett.132.182502

Discovery and Sensitivity

After you run a 0vββ search...

- You either see an excess at the Q value and fit a peak with some rate to it.
- Or you don't see an excess. In that case, you set a lower limit on half-life:

Sensitivity vs. Discovery

exclusion

10⁻²

90% confidence-level

10³⁰

10²⁹

^{1/2} 30% Sensitivity [years] 10²⁶ 10²⁶

10²⁵ '

10²⁴

10⁻³

 $T_{1/2}^{0\nu}$

10 counts/FWHM-t-y

 10^{2}

10

 10^{3}

 10^{3}

10³⁰

10²⁹

T_{1/2} 3s DS [years] 10 82

IO m^{min}_{bb} range

Background free

.025 counts/FWHM-t-v

counts/FWHM-t-y

count/FWHM-t-y

10 counts/FWHM-t-y

 10^{2}

 $N_a T \epsilon$

10

10²⁷

10²⁶

10²⁵

 10^{24}

10⁻³

sensitivity

10⁻²

10⁻¹

Exposure [ton-years]

10⁻¹

Exposure [ton-years]

J. Gruszko – Review of Neutrinoless Double-Beta Decay

Reaching Ultra-Long Half-Life

- Best-case scenario: quasi-background-free experiment, $3\sigma = 3$ counts
- Long half-lives mean you need large exposures. For 3-4 counts of 0vββ at...
 - 10²⁶ years: 100 kg-years
 - 10²⁷ years: 1 ton-year
 - 10²⁸ years: 10 ton-years

For higher backgrounds, required exposure increases accordingly

- Goal of the next generation of experiments: cover the bottom of the IO region in discovery mode for most nuclear matrix elements
 - Implies required discovery sensitivities of 10²⁷ to 10²⁸ years
 - Implies required experimental masses at the ton-scale
- Once you've built a very large, low-background detector, you can search for other things: axions, WIMPs, other exotic BSM

Experimental Techniques

Most Experiments

Advantages:

- Energy resolution
- Staging

Granular Detectors

- Bolometers and semiconductors
- E.g. CUPID, LEGEND

Advantages:

• Self-shielding

Scalability

Monolithic Detectors

- - Scintillators and TPCs
 - E.g. KamLAND-Zen, SNO+, nEXO, NEXT

J. Gruszko – Review of Neutrinoless Double-Beta Decay

0vββ Signal and Backgrounds

Techniques for background suppression:

- Event topology
- Time coincidence
- Surface/bulk discrimination
- Veto systems
- Particle identification: distinguish nuclear and electron scatters, dE/dx, etc.
- Tag the daughter atom (R&D)

$0\nu\beta\beta$ Experiments

Courtesy L. Maneti, from Agostini et al., Rev. Mod. Phys. 95 (2023)

The Experimental Landscape

Completed Experiments

Running and Under Construction

Proposed

Current Best Limits on 0vßß

Experiment	Isotope	Exposure [kg yr]	T ^{0ν} [10 ²⁵ yr]	m _{ββ} [meV]
GERDA+MJD +L200	⁷⁶ Ge	246.8	19	77-175
KamLAND- Zen 800	¹³⁶ Xe	2097	38	28-122
CUORE	¹³⁰ Te	2039	3.8	70-240

New results from LEGEND-200 and CUORE announced at Neutrino '24, not yet published

NSAC recommendation: quote a range of $m_{\beta\beta}$ using the largest and smallest available NME from the 4 main calculation methods; g_A =1.27; no contribution from the contact term

LEGEND-200

point-like energy deposition multi-detector background

J. Gruszko – Review of Neutrinoless Double-Beta Decay

March 2023 - February 2024: Initial physics data taking with 142 kg of detectors Golden Dataset: 48.3 kg yr initially unblinded

New LEGEND-200 Results

March 2023 - February 2024: Initial physics data taking with 142 kg of detectors Golden Dataset: 48.3 kg yr initially unblinded

More Results Coming Soon...

- CUORE: continuing to run (background-limited)
- LEGEND-200: continuing to run, expect ultimate half-life sensitivity of 1×10^{27} yrs
- SNO+ Te-loading due to begin in 2025, with initial planned sensitivity of 2×10^{26} yrs
- KamLAND2-Zen: upgrade beginning, with planned sensitivity of 2×10^{27} yrs

The Ton-Scale Generation

- Covering the IO in discovery mode requires O(1 ton) of isotope
- 3 candidate experiments currently in design and proposal phase: LEGEND, nEXO, and CUPID
- All 3 experiments cover the IO for some matrix elements, and miss for others

LEGEND-1000 Timeline					
2024 -2025	2026-2029	2030	2031-2035	2036-2045	
Design	Construction				
			Early Physics Data	Operations	

Discovery Sensitivity for the "Big 3"

- Tonne-scale bolometer approach demonstrated in CUORE
- Scintillating bolometer technique demonstrated in CUPID-Mo and other experiments, allows for α rejection
- Switch from CUORE crystals to scintillating bolometers with light readout in existing infrastructure

Material provided by CUORE, CUPID, CUPID-Mo, and CUPID-0 Collaborations

- Crystal: Li₂¹⁰⁰MoO₄
- Enrichment > 95% \rightarrow 253 kg of ¹⁰⁰Mo
- Energy res. (FWHM): 5 keV
- BI < 10⁻⁴ cnts/(keV kg yr)
- Discovery sensitivity: $T_{1/2} \sim 1.1 \times 10^{27}$ yrs
- $m_{\beta\beta}$ discovery sensitivity: 12-20 meV

- Large single-phase LXe TPC, building on EXO-200 experience
- Take advantage of self-shielding, vertex reconstruction, and event topology information to reduce backgrounds

- Enriched to 90% ¹³⁶Xe
- Energy res. (σ_E/E): 0.8%
- Discovery sensitivity: $T_{1/2} \sim 7.4 \times 10^{27} \mathrm{yrs}$

J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022)

diccovory concitivity: 5.27 mo//

LEGEND-1000

- Builds on techniques from MJD, GERDA, and LEGEND-200
- HPGe inverted-coaxial point-contact detectors in LAr active shield:
 - Multi-site and surface event rejection
 - Excellent energy resolution (~0.1% FWHM)
- New cryostat LNGS using underground Argon, cleaner electronics, and larger-mass detectors
 - 1000 kg of ⁷⁶Ge
 - Energy res. (FWHM): 2.5 keV
 - $BI < 10^{-5}$ cnts/(keV kg yr)
 - Discovery sensitivity: $T_{1/2} \sim 1.3 \times$ 10^{28} yrs
 - m_{ee} discovery sensitivity: 9-21 me

What Comes Next?

If we make a discovery at the ton scale (or before):

- Measure in more isotopes
- "HyperNEMO" or other options to measure ββ kinematics

If not:

- Next-next-generation experiments are targeting $m_{\beta\beta} \approx 10$ meV or smaller
- At the moment, there is no "magic bullet" to reach the 1 meV level
- There are, however, many ideas and there is a rich R&D program pursuing the needed techniques

SuperNEMO

R&D for ultra-large Xe TPCs: new acquisition strategies and Ba tagging

Fluorescent moleculebased ID for NEXT, ACS Sens. 2021, 6, 1, 192–202 (2021)

BSM and Other Physics in $0\nu\beta\beta$ Detectors

Baryon and Lepton Number Violation Searches

BSM and Other Physics in $0\nu\beta\beta$ Detectors

Mechanism	Signature	Energy range	Status	Recent Germanium References
Bosonic Dark Matter	Peak at <i>m</i> _b	5 — 100keV	Done in MJD, GERDA	PRL 118 (2017) 161801, PRL 125 (2020) 011801, PRL 132 (2024) 041001, EPJ C84 (2024) 940
Baryon Decay	Time Correlation, High Energy	0-10 MeV	Done in MJD	PRD 99 (2019) 072004 EPJ C83 (2023) 778
Fractionally Charged Cosmic rays	High Multiplicity-coincidence events	Few keV	Done in MJD	PRL 120 (2018) 211804
WIMP searches	Exponential Excess + Annual Modulation. Migdal Effect	< 10 keV	CDEX/MALBEK/CoGeNT	PRL 120 (2018) 241301, Phys. Procedia 61 (2015) 77
Solar axions	Peaked Spectra + daily modulation	< 10 keV	Partially Done in MJD	PRL 118 (2017) 161801; Astropart.Phys. 89 (2017) 39, Wiseman PhD Thesis
Majoron Emission	2vββ spectral distortion	$Q_{\beta\beta}$	Done in GERDA	EPJ. C75 (2015) 416
Lorentz Violation	2vββ spectral distortion	$Q_{\beta\beta}$		PRD 88 (2013) 071902
Electron Decay	Peak at 11.8 keV	~10 keV	Done in MJD	PRL 118 (2017) 161801, Nat. Phys. 20 (2024) 1078, EPJ C84 (2024) 940
Pauli Exclusion Principle Violation	Peak at 10.6 keV	~ 10 keV	Done in MJD	PRL 118 (2017) 161801, Nat. Phys. 20 (2024) 1078
BSM physics in Ar	Features in Ar Veto spectrum		ECEC in Ar36 (GERDA)	EPJ C75 (2015) 416

+ Prompt Supernova Neutrinos, SuperWIMPS, Solar Neutrinos, QM Wavefunction Collapse...

Conclusion

- Neutrino mass is BSM physics, and we still haven't explained it
- Ονββ gives access to Lepton Number Violation up to the highest energy scales
- Regardless of the mechanism, $0\nu\beta\beta$ would be a direct observation of lepton number violation and prove that neutrinos have Majorana mass
- Expect searches reaching further into the IO band in the next 5 years
- The coming generation of experiments is exploring very rich parameter space and (hopefully) beginning very soon, with rich R&D to go further