Exploring neutrinoless double beta decay with the DARWIN observatory

Jose Cuenca-García

jose.cuenca@physik.uzh.ch

on behalf of the DARWIN collaboration

International Workshop on Baryon and

Lepton Number Violation (BLV)

Karlsruhe

11.10.2024

Experimental overview

Which nuclei can decay via $0\nu\beta\beta$?

• Number of events around the Q-value region:

 $N \propto \frac{N_A}{W} \cdot \frac{a \cdot \epsilon \cdot M \cdot t}{T_{1/2}}$ = N_A : Avogadro number W: molar mass

- *a*: isotopic abundance
- ϵ : detection efficiency
- M: total active mass
- t: measuring time
- $T_{1/2}$: half-life of the isotope

CandidateQ [MeV]Abund [%] $4^{8}Ca \rightarrow 4^{8}Ti$ 4.271 0.187 $7^{6}Ge \rightarrow 7^{6}Se$ 2.039 7.8 $8^{2}Se \rightarrow 8^{2}Kr$ 2.995 9.2 $9^{6}Zr \rightarrow 9^{6}Mo$ 3.350 2.8 $1^{00}Mo \rightarrow 1^{00}Ru$ 3.034 9.6 $1^{10}Pd \rightarrow 1^{10}Cd$ 2.013 11.8 $1^{16}Cd \rightarrow 1^{16}Sn$ 2.802 7.5 $1^{24}Sn \rightarrow 1^{24}Te$ 2.228 5.64 $1^{30}Te \rightarrow 1^{30}Xe$ 2.479 8.9 $1^{50}Nd \rightarrow 1^{50}Sm$ 3.367 5.6			
48Ca -> 48Ti 4.271 0.187 76Ge -> 76Se 2.039 7.8 82Se -> 82Kr 2.995 9.2 96Zr -> 96Mo 3.350 2.8 100Mo -> 100Ru 3.034 9.6 110Pd -> 110Cd 2.013 11.8 116Cd -> 116Sn 2.802 7.5 124Sn -> 124Te 2.228 5.64 130Te -> 130Xe 2.479 8.9 150Nd -> 150Sm 3.367 5.6	Candidate	Q [MeV]	Abund [%]
76Ge -> 76Se 2.039 7.8 82Se -> 82Kr 2.995 9.2 96Zr -> 96Mo 3.350 2.8 100Mo -> 100Ru 3.034 9.6 110Pd -> 110Cd 2.013 11.8 116Cd -> 116Sn 2.802 7.5 124Sn -> 124Te 2.228 5.64 130Te -> 130Xe 2.530 34.5 136Xe -> 136Ba 2.479 8.9 150Nd -> 150Sm 3.367 5.6	⁴⁸ Ca -> ⁴⁸ Ti	4.271	0.187
82Se -> 82Kr 2.995 9.2 96Zr -> 96Mo 3.350 2.8 100Mo -> 100Ru 3.034 9.6 110Pd -> 110Cd 2.013 11.8 116Cd -> 116Sn 2.802 7.5 124Sn -> 124Te 2.228 5.64 130Te -> 130Xe 2.530 34.5 136Xe -> 136Ba 2.479 8.9 150Nd -> 150Sm 3.367 5.6	⁷⁶ Ge -> ⁷⁶ Se	2.039	7.8
96Zr -> 96Mo 3.350 2.8 100Mo -> 100Ru 3.034 9.6 110Pd -> 110Cd 2.013 11.8 116Cd -> 116Sn 2.802 7.5 124Sn -> 124Te 2.228 5.64 130Te -> 130Xe 2.530 34.5 136Xe -> 136Ba 2.479 8.9 150Nd -> 150Sm 3.367 5.6	⁸² Se -> ⁸² Kr	2.995	9.2
100Mo -> 100Ru3.0349.6110Pd -> 110Cd2.01311.8116Cd -> 116Sn2.8027.5124Sn -> 124Te2.2285.64130Te -> 130Xe2.53034.5136Xe -> 136Ba2.4798.9150Nd -> 150Sm3.3675.6	⁹⁶ Zr -> ⁹⁶ Mo	3.350	2.8
110Pd -> 110Cd2.01311.8116Cd -> 116Sn2.8027.5124Sn -> 124Te2.2285.64130Te -> 130Xe2.53034.5136Xe -> 136Ba2.4798.9150Nd -> 150Sm3.3675.6	¹⁰⁰ Mo -> ¹⁰⁰ Ru	3.034	9.6
116Cd -> 116Sn 2.802 7.5 124Sn -> 124Te 2.228 5.64 130Te -> 130Xe 2.530 34.5 136Xe -> 136Ba 2.479 8.9 150Nd -> 150Sm 3.367 5.6	¹¹⁰ Pd -> ¹¹⁰ Cd	2.013	11.8
124Sn -> 124Te 2.228 5.64 130Te -> 130Xe 2.530 34.5 136Xe -> 136Ba 2.479 8.9 150Nd -> 150Sm 3.367 5.6	¹¹⁶ Cd -> ¹¹⁶ Sn	2.802	7.5
130Te -> 130Xe 2.530 34.5 136Xe -> 136Ba 2.479 8.9 150Nd -> 150Sm 3.367 5.6	¹²⁴ Sn -> ¹²⁴ Te	2.228	5.64
136Xe -> 136Ba 2.479 8.9 150Nd -> 150Sm 3.367 5.6	¹³⁰ Te -> ¹³⁰ Xe	2.530	34.5
¹⁵⁰ Nd -> ¹⁵⁰ Sm 3.367 5.6	¹³⁶ Xe -> ¹³⁶ Ba	2.479	8.9
	¹⁵⁰ Nd -> ¹⁵⁰ Sm	3.367	5.6

What do we expect to see?

Sum energy of the 2 electrons [keV]

So far, no observation of this decay.

Best limits on $T_{1/2}^{0\nu}$

- ¹³⁶Xe: $3.8 \cdot 10^{26}$ yr (KamLAND-Zen)
- ¹³⁰Te: 2.2 · 10²⁵ yr (CUORE)
- 76 Ge: $1.8 \cdot 10^{26}$ yr (GERDA)

Experimental requirements

In summary, to improve sensitivity, we require:

- 1. Large active masses of the detectors
- 2. Low background
- 3. High isotopic abundance (or an isotope that can be enriched)
- 4. Good energy resolution

How do we try to detect this?

Why xenon TPCs?

⁽Credit: XENON collaboration)

- High light (S1) and charge (via proportional scintillation, S2) yield
- Good energy reconstruction (linear combination of S1 & S2)
- 3D position resolution:
 - Single versus multiple scatters
 - Fiducialisation
- Particle ID via S2/S1

Already operating xenon TPCs

XENON (LNGS)

World leading experiments in dark matter searches

Very similar detectors:

- They operate < 10 t of xenon
- Same detection principle

PandaX (CJPL)

LZ (SURF)

WIMP detection sensitivity

The DARWIN observatory

- Proposed next-generation xenon experiment
- It consists of a dual-phase time projection chamber (TPC) filled with 50 t of xenon
- 2.6 m in diameter and 2.6 m height
- Low background, double-walled titanium cryostat
- Two arrays of photosensors

DARWIN science goals

DARWIN, with its large mass, lowenergy threshold and ultra-low background, will open a large variety of physics channels

In particular, $0v\beta\beta$ of ¹³⁶Xe

DARWIN collaboration

200 members from 35 institutions in Europe, USA, Asia, Australia

DARWIN R&D

Why is DARWIN a good $0\nu\beta\beta$ detector?

- It contains a lot of natural xenon:
 - 9% is ¹³⁶Xe
 - Q value of $^{136}\text{Xe}~\text{Ov}\beta\beta$ far from other backgrounds
 - It can be enriched
- It can achieve a good energy resolution:

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} + b \approx 0.8\% \text{ at } Q \text{ (Demonstrated by XENON1T)}$$

• It can reach a low background rate

Backgrounds in DARWIN

• Nuclear recoils

- Muon-induced neutrons water tank to stop neutrons from rock-concrete (6 m radius cylinder)
- Radiogenic neutrons —> improve material selection

• Electronic recoils

- Intrinsic: ²²²Rn, ⁸⁵Kr, ¹³⁶Xe, ¹²⁴Xe
- Materials: Traces of U and Th decay chains
- Neutrinos: neutrino-electron scattering from solar neutrinos, ⁷Be neutrinos

We have performed detailed Geant4 simulations to estimate the impact of specific backgrounds (materials and cosmogenic)

Cosmogenic activation: ¹³⁷Xe

In addition to these backgrounds, the ¹³⁷Xe beta decay can mimic a $0\nu\beta\beta$ signal

Cosmogenic simulations for several locations: DARWIN collaboration, Eur. Phys. J. C (2024) 84

The simulations

- Realistic simulation of the geometry of the TPC
- Shielding materials (rock, concrete)
- Several physics lists tested
- Realistic muon generator (based on MUSIC)

We obtain production rates of ¹³⁷Xe, muon-induced neutrons, isotopes produced by spallation...

Sensitivity of DARWIN to the $^{136}\text{Xe}~\text{Ov}\beta\beta$

- Although the final location of the experiment is not yet decided, we have taken the Gran Sasso (LNGS) laboratory as a reference for our calculations
- Region Of Interest: 2435 2481 keV (Q ± FWHM/2)
- Exposure: 10 yr
- Fiducial mass: 5 t
- Energy resolution: 0.8% at Q = 2457.83 ± 0.37 keV

Sensitivity at 90% CL:

$$T_{1/2}^{0\nu} = \ln 2 \cdot \frac{\epsilon \cdot f_{ROI} \cdot a \cdot N_A}{1.64 M_{Xe}} \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} \approx 2.7 \cdot 10^{27} yr$$

DARWIN collaboration, Eur. Phys. J. C (2023) 83

Background and signal of $^{136}\text{Xe}~\text{Ov}\beta\beta$

Signal: $2 \cdot 10^{27}$ yr

DARWIN collaboration, Eur. Phys. J. C (2024) 84

Туре	Background index	Rate	Rel. uncertainty
External (5 t FV)			
²¹⁴ Bi peaks + continuum	$1.36\cdot 10^{-3}$	0.313	$\pm 3.6\%$
²⁰⁸ Tl continuum	$6.20\cdot 10^{-4}$	0.143	$\pm 4.9\%$
⁴⁴ Sc continuum	$4.64 \cdot 10^{-6}$	0.001	±15.8%
Intrinsic contributions			
⁸ B ($v - e$ scattering)	$1.51\cdot 10^{-4}$	0.035	±13.5%
¹³⁷ Xe	$1.69 \cdot 10^{-4}$	0.039	$\pm 10.2\%$
136 Xe ($2\nu\beta\beta$)	$5.78\cdot 10^{-6}$	0.001	±17.0%
222 Rn in LXe (0.1 µBq kg ⁻¹)	$3.09\cdot 10^{-4}$	0.071	$\pm 1.6\%$
Total	$2.62 \cdot 10^{-3}$	0.603	±2.4%
Events/(t yr keV)		Events	s/yr

Comparison with other experiments

The future: XLZD

 New, stronger international collaboration with demonstrated experience in xenon time projection chambers

Collaboration has been established (September 2024)

https://xlzd.org/

RAL (2024)

KIT (2022)

Evolution timeline

Sensitivity with XLDZ

Assumptions:

 $0.1 \,\mu$ Bq/kg ²²²Rn materials radiopurity already identified

Summary

- The neutrinoless double beta decay (0vββ) would prove the Majorana nature of the neutrino
- Despite being a dark matter experiment, DARWIN is sensitive to other physics channels of interest
- In its baseline design it contains 50 t of natural xenon (9% ¹³⁶Xe)
- Simulations yield an expected sensitivity limit for DARWIN of $T_{1/2}^{0\nu} = 3 \cdot 10^{27}$ yr for a 10 year exposure with 5 t fiducial mass
- The XLZD experiment will operate ~60 t of xenon in ultra-low background conditions
- Its sensitivity to the 0vββ would be competitive with other experiments dedicated to the study of this process

Nice pictures of Xenoscope TPC

