Exploring neutrinoless double beta decay with the DARWIN observatory

Jose Cuenca-García

jose.cuenca@physik.uzh.ch

on behalf of the DARWIN collaboration

International Workshop on Baryon and

Lepton Number Violation (BLV)

Karlsruhe

11.10.2024

Experimental overview

Which nuclei can decay via $0\nu\beta\beta$?

• Number of events around the Q-value region:

$$
N \propto \frac{N_A}{W} \cdot \frac{a \cdot \epsilon \cdot M \cdot t}{T_{1/2}}
$$

- N_A : Avogadro number
- \blacksquare W: molar mass
- \blacksquare a: isotopic abundance
- \blacksquare ϵ : detection efficiency
- \blacksquare M : total active mass
- $t:$ measuring time
- \blacksquare $T_{1/2}$: half-life of the isotope

What do we expect to see?

Sum energy of the 2 electrons [keV]

So far, no observation of this decay.

Best limits on $T^{0\nu}_{1/2}$

- $136Xe: 3.8 \cdot 10^{26}$ yr (KamLAND-Zen)
- 130 Te: $2.2 \cdot 10^{25}$ yr (CUORE)
- 76 Ge: $1.8 \cdot 10^{26}$ yr (GERDA)

Experimental requirements

In summary, to improve sensitivity, we require:

- 1. Large active masses of the detectors
- 2. Low background
- 3. High isotopic abundance (or an isotope that can be enriched)
- 4. Good energy resolution

How do we try to detect this?

Why xenon TPCs?

⁽Credit: XENON collaboration)

- High light (S1) and charge (via proportional scintillation, S2) yield
- Good energy reconstruction (linear combination of S1 & S2)
- 3D position resolution:
	- Single versus multiple scatters
	- **Fiducialisation**
- Particle ID via S2/S1

Already operating xenon TPCs

XENON (LNGS)

World leading experiments in dark matter searches

Very similar detectors:

- They operate $<$ 10 t of xenon
- Same detection principle

PandaX (CJPL)

LZ (SURF)

WIMP detection sensitivity

The DARWIN observatory

- Proposed next-generation xenon experiment
- It consists of a dual-phase time projection chamber (TPC) filled with 50 t of xenon
- 2.6 m in diameter and 2.6 m height
- Low background, double-walled titanium cryostat
- Two arrays of photosensors

DARWIN science goals

DARWIN collaboration

200 members from 35 institutions in Europe, USA, Asia, Australia

DARWIN R&D

Why is DARWIN a good 0νββ detector?

- It contains a lot of natural xenon:
	- 9% is 136 Xe
	- Q value of 136 Xe 0v $\beta\beta$ far from other backgrounds
	- It can be enriched
- It can achieve a good energy resolution:

$$
\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} + b \approx 0.8\% \text{ at Q} \text{ (Demonstrated by XENON1T)}
$$

• It can reach a low background rate

Backgrounds in DARWIN

• Nuclear recoils

- **Muon-induced neutrons** \rightarrow water tank to stop neutrons from rock-concrete (6 m radius cylinder)
- **Radiogenic neutrons** \rightarrow improve material selection

• Electronic recoils

- **Intrinsic**: ²²²Rn, ⁸⁵Kr, ¹³⁶Xe, ¹²⁴Xe
- **Materials**: Traces of U and Th decay chains
- **Neutrinos**: neutrino-electron scattering from solar neutrinos, ⁷Be neutrinos

We have performed detailed Geant4 simulations to estimate the impact of specific backgrounds (materials and cosmogenic)

Cosmogenic activation: ¹³⁷Xe

In addition to these backgrounds, the ¹³⁷Xe beta decay can mimic a $0\nu\beta\beta$ signal

Cosmogenic simulations for several locations: DARWIN collaboration, Eur. Phys. J. C (2024) 84

•

6.5 Vertical Depth (km w.e.)

Overburden

Flat

Mountain

CJPL

SNOLAB

 $5.5\quad 6.0$

The simulations

- Realistic simulation of the geometry of the TPC
- Shielding materials (rock, concrete)
- Several physics lists tested
- Realistic muon generator (based on MUSIC)

We obtain production rates of $137Xe$, muon-induced neutrons, isotopes produced by spallation…

Sensitivity of DARWIN to the 136 Xe 0ν $\beta\beta$

- Although the final location of the experiment is not yet decided, we have taken the Gran Sasso (LNGS) laboratory as a reference for our calculations
- Region Of Interest: $2435 2481$ keV $(Q \pm FWHM/2)$
- Exposure: 10 yr
- Fiducial mass: 5 t
- Energy resolution: 0.8% at $Q = 2457.83 \pm 0.37$ keV

Sensitivity at 90% CL: $\epsilon \cdot f_{ROI} \cdot a \cdot N_A$ $M \cdot t$ $T_{1/2}^{0\nu} = \ln 2 \cdot$ $\approx 2.7 \cdot 10^{27}$ yr ⋅ 1.64 M_{Xe} $B \cdot \Delta E$ $1 \cdot 10^{28}$

DARWIN collaboration, Eur. Phys. J. C (2023) 83

Background and signal of 136 Xe 0ν $\beta\beta$

Signal: $2 \cdot 10^{27}$ yr

DARWIN collaboration, Eur. Phys. J. C (2024) 84

Comparison with other experiments

The future: XLZD

- Merger of DARWIN,XENON and LUX-ZEPLIN collaborations to build and operate next-generation liquid xenon detector
- New, stronger international collaboration with demonstrated experience in xenon time projection chambers

RAL (2024)

KIT (2022)

Collaboration has been established (September 2024)

<https://xlzd.org/>

Evolution timeline

Sensitivity with XLDZ

Assumptions:

0.1 μBq/kg ²²²Rn materials radiopurity already identified

Summary

- The neutrinoless double beta decay (0νββ) would prove the Majorana nature of the neutrino
- Despite being a dark matter experiment, DARWIN is sensitive to other physics channels of interest
- In its baseline design it contains 50 t of natural xenon $(9\%$ 136 Xe)
- Simulations yield an expected sensitivity limit for DARWIN of $T_{1/2}^{0\nu} = 3\cdot 10^{27}$ yr for a 10 year exposure with 5 t fiducial mass
- The XLZD experiment will operate ~60 t of xenon in ultra-low background conditions
- Its sensitivity to the 0νββ would be competitive with other experiments dedicated to the study of this process

Nice pictures of Xenoscope TPC

